
CHAPTER 9

 METHODS – LOGICAL PERFORMING UNITS IN PROGRAMS

The word "method" has already been mentioned many times in this book. A method is a
piece of program code that performs a well-defined task. In every program we have had a
method named Main(). Method Main() is always executed first when the execution of a
program begins. We have also encountered methods Console.Write() and Con-
sole.ReadLine() which are standard methods to write data to the screen and read data
from the keyboard. In Chapter 8 we studied many string methods (IndexOf(), Sub-
string(), Compare(), etc.) which are standard methods to manipulate strings. Now we
are going to take a closer look at methods and their use. You will learn how to write your
own methods. The term "calling" will be an important concept associated with methods.

With C# we can write static methods and non-static instance methods. The methods that
we are going to study in this chapter are static methods. The instance methods, which are
in some ways different from the static methods, will be studied in the following chapter.

These are sample pages from Kari Laitinen’s book
"A Natural Introduction to Computer Programming with C#".
For more information, please visit
http://www.naturalprogramming.com/csbook.html

236 Chapter 9: Methods – Logical performing units in programs

9.1 Simple static methods and the concept of calling

All programs that we have studied so far are of the form

// SomeName.cs

using System ;

class SomeName
{
 static void Main()
 {
 Statements that declare data (variables, objects, and arrays).

 Functional action statements.
 }
}

The source program statements that we have seen so far have been statements of the
method named Main(). Method Main() has always the reserved words static and
void preceding its name, and a pair of empty parentheses () is written after the method
name main. The C# statements that dictate what method Main() does are inside a pair of
braces { }.

From now on, we will start studying programs that may contain several methods.
The simplest form of a method is similar to method Main() above. In a simple method,
the method is static, the type of the method is void, and the parentheses after the method
name are empty.

Program Messages.cs is an example where a simple method is called inside the
method Main(). Although the structure of Messages.cs is such that the source code of the
method print_message() is written first and method Main() is at the end of program,
the program execution starts from method Main(). Method Main() is the "main pro-
gram" in the file. The operating system of the computer where the program is executed
always begins the program by executing the method that is named Main().

Method print_message() in program Messages.cs can be considered a subroutine
because its execution is completely controlled by method Main(). The source code of the
subroutine starts

and it is called inside method Main() simply by writing the method name in the following
way

print_message() ;

What happens in a method call is that the calling method stops running, and the state-
ments of the method that was called are executed. When all statements of the method that
was called are executed, the program execution continues in the calling method from the
statement that follows the method call.

In Messages.cs, method print_message() is called twice. By studying the output
you can find out that print_message() always prints the same text lines, while method
Main() prints something else in between the message from print_message(). Program
Messages.cs could, of course, be written without method print_message(). If the state-
ments inside method print_message() were copied to those two places where
print_message() is called in method Main(), the program would behave in the same
way as it is doing now, but it would not need any method calls.

static void print_message()
{
 ...

Note that there is no
semicolon (;) here.

9.1 Simple static methods and the concept of calling 237

// Messages.cs (c) Kari Laitinen

using System ;

class Messages
{
 static void print_message()
 {
 Console.Write("\n This is method named \"print_message()\".") ;
 Console.Write("\n Methods usually contain many statements. ") ;
 Console.Write("\n Let us now return to the calling method.") ;
 }

 static void Main()
 {
 Console.Write("\n THE FIRST STATEMENT IN METHOD \"Main()\".") ;

 print_message() ;

 Console.Write("\n THIS IS BETWEEN TWO METHOD CALLS.") ;

 print_message() ;

 Console.Write("\n END OF METHOD \"Main()\".\n") ;
 }
}

The statements that form the body of method print_message() are inside these braces.
The structure of this method is similar to the structure of method Main(). Generally, the name
of a method can be invented by the programmer, but method Main() must have that name.

Method print_message() is called twice inside method Main(). A simple
static method belonging to the same class as the calling method can be called by
writing its name, a pair of empty parentheses, and a semicolon. Method calls are
statements in C#. What happens in a method call is that the statements inside the
called method are executed, and program execution continues from the statement
that follows the method call in the calling method.

Messages.cs - 1. Method Main() calling a simple method named print_message().

All methods must be written inside
some class declaration. In this program,
class Messages contains two separate
methods.

D:\csfiles2>Messages

 THE FIRST STATEMENT IN METHOD "Main()".
 This is method named "print_message()".
 Methods usually contain many statements.
 Let us now return to the calling method.
 THIS IS BETWEEN TWO METHOD CALLS.
 This is method named "print_message()".
 Methods usually contain many statements.
 Let us now return to the calling method.
 END OF METHOD "Main()".

Messages.cs - X. Method print_message() prints always the same message.

Those lines containing
mostly lowercase letters
are printed by method
print_message().

238 Chapter 9: Methods – Logical performing units in programs

In programming terminology, the method that calls another method is the caller, and
the method that is called is the callee. In Messages.cs, method Main() is the caller and
method print_message() is the callee. A caller calls a callee like an employer employs
an employee. A callee is always subordinate to its caller. The caller decides when a callee
is executed. The caller continues by executing the statements that follow the method call
when the statements of a callee have been executed.

Methods are executed, statement by statement, from the first statement to the last
statement. Although computers can execute statements extremely fast, only one statement
is being executed at a time. To better understand what is happening when a program is
being executed, we can think that there exists such a thing as "program control". The pro-
gram control is at that statement which is currently being executed. When the current
statement has been completely executed, the program control is passed to the following
statement. The program control is at the first executable statement of method Main()
when the execution of a program begins. When the last statement of method Main() is
executed, the program control is passed back to the operating system of the computer.

A method call is a statement that passes the program control to the called method, the
callee. Just after the execution of a method call, the program control is at the first execut-
able statement in callee. The program control goes through every statement in callee.
After the last statement in the callee has been executed, the program control is passed to
the statement that follows the method call in caller.

In large computer programs there are methods that call other methods that call other
methods that call other methods ... In well-designed programs there is, of course, always a
last method that is called but which does not call any other methods. In large programs,
methods are useful because they allow programs to be divided into manageable pieces of
source code. Program Letters.cs is an example where a called method calls two other
methods. Method print_letters() is a callee in relation to method Main(), but it is a
caller in relation to the two other methods.

Although Letters.cs does not do anything that could be considered as creative com-
puting (i.e. the program is a simple textbook program), the program is an example of how
a programming task can be divided into smaller programming tasks with the help of meth-
ods. What program Letters.cs does is that it prints all letters of the English alphabet. First
it prints all uppercase letters and then it prints all lowercase letters. We can imagine that
Letters.cs is the result of a software development project. A boss in a software company
could have started a software project to produce a program that first prints all uppercase
letters and then all lowercase letters. The software developers working on the project
could have divided the programming work into the subtasks

• print uppercase letters

• print lowercase letters

which would have been implemented (i.e. programmed) as two separate methods by dif-
ferent people.

A method is a piece of source program that performs a certain activity. When a caller
calls a method, the call is like a command to perform the activity that is programmed
inside the method. Because method calls are like commands, it is usual that method names
are in a commanding, imperative form. For example, the method names

print_uppercase_letters
print_message

are in the form of a command, since an imperative verb is the first word in the name. Tech-
nically, programmers are free to name methods according to the general naming rules of
C#, but it is useful to name methods so that they are commands. This way method names
can be easily distinguished from variable names. Inventing accurate and descriptive names
for the methods you write helps you to understand your programming task better.

9.1 Simple static methods and the concept of calling 239

// Letters.cs (c) 2003 Kari Laitinen

using System ;

class Letters
{
 static void print_uppercase_letters()
 {
 Console.Write("\n Uppercase English letters are: \n\n") ;

 for (char letter_to_print = 'A' ;
 letter_to_print <= 'Z' ;
 letter_to_print ++)
 {
 Console.Write(" " + letter_to_print) ;
 }
 }

 static void print_lowercase_letters()
 {
 Console.Write("\n\n Lowercase English letters are: \n\n") ;

 for (char letter_to_print = 'a' ;
 letter_to_print <= 'z' ;
 letter_to_print ++)
 {
 Console.Write(" " + letter_to_print) ;
 }
 }

 static void print_letters()
 {
 print_uppercase_letters() ;
 print_lowercase_letters() ;
 }

 static void Main()
 {
 print_letters() ;
 }
}

These two methods are called by
the method print_letters().

Method Main() has only one statement
which is a method call. You should note that
these methods are in such an order that a callee
is always written before the caller. In this book
programs are generally written so that the
method that will be called later in the program is
placed before the calling method in the source
program file.

The method called by
Main() contains two
other method calls.

Letters.cs - 1. Method Main() calling a method that calls two other methods.

Letters.cs - X. All text is printed here by the two topmost methods.

D:\csfiles2>Letters

 Uppercase English letters are:

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 Lowercase English letters are:

 a b c d e f g h i j k l m n o p q r s t u v w x y z

