
1 © Kari Laitinen

Kari Laitinen
http://www.naturalprogramming.com
2019-01-07 File created.
2019-01-30 Last modification.

ANDROID PROGRAMMING EXERCISES

2 © Kari Laitinen

Among the Android example apps you can find an app named SquareBallRectangle, which
shows a square, a ball, or a rectangle depending on what has been selected with radio buttons.
The app consists of the following files
 main/java/square/ball/rectangle/SquareBallRectangleActivity.java
 main/java/square/ball/rectangle/SquareBallRectangleView.java
 main/res/layout/activity_square_ball_rectangle.xml

You can make this app work in your Android Studio when you create a project with the name
SquareBallRectangle. You must name the main activity class
SquareBallRectangleActivity, and the layout file must be named
activity_square_ball_rectangle.xml. It is also important that the package name is
square.ball.rectangle

After you have created a project and followed the above naming rules, you can copy the
mentioned files from the web to the corresponding folders in your Android project. When
you copy the files, you can overwrite the files that Android Studio has created.

EXERCISES WITH SquareBallRectangle

3 © Kari Laitinen

Exercise 1:

Modify the program so that in place of the rectangle a triangle will be drawn. You should
modify the .xml file so that the text ’Triangle’ is selectable with the radio buttons.

The Canvas class does not provide a single method to draw a triangle, but the triangle can be
drawn by using a class named Path. With the Path class it is possible to specify a path
through selected graphical points. The Path class is used, for example, in the example app
FlyingArrow. A Path object that specifies a triangle can be constructed, for example, with the
following statements.

 Path triangle_path = new Path() ;

 triangle_path.moveTo(view_center_point_x, view_center_point_y - 80) ;
 triangle_path.lineTo(view_center_point_x + 96, view_center_point_y + 80) ;
 triangle_path.lineTo(view_center_point_x - 96, view_center_point_y + 80) ;
 triangle_path.close() ;

When the Path object that represents the triangle is constructed with the above statements,
the triangle will appear in the middle of the View object, and it is not necessary to adjust the
zero point of the graphical coordinate system.

Exercise 2:

Improve the program so that a new shape named "Piece of Cake" can be selected. To make
this happen you must specify a new RadioButton to the .xml file. Only the .xml file needs to
be modified to make the new RadioButton visible. You can test your program after this
modification, and do the actual drawing operation later.

4 © Kari Laitinen

When "Piece of Cake" is selected, the application should look like the following.

A "Piece of Cake" can be drawn by using a Canvas method named drawArc(). By studying
the file DrawingDemoActivity.java of the DrawingDemo app, you can find out how to use
the method.

For the drawArc() method angles are specified clockwise, not counter clockwise as in many
other systems. Rectangles in Android are specified with the coordinates of upper left corner
and lower right corner.

5 © Kari Laitinen

Exercise 3:

In this exercise you should improve the program so that this application will be a proper
Android app. Android documents suggest that texts displayed by an app should not be put
into layout files as is done in file res/layout/activity_square_ball_rectangle.xml. In well-
made Android apps, texts should be stored in file res/values/strings.xml. This file probably
already exists for your app.

Now your task is to put texts like "Square", "Ball", etc., to the res/values/strings.xml file and
modify the file activity_square_ball_rectangle.xml so that it is able to refer to the strings in
the strings.xml file. To do this, you should check out how strings are referred to in the layout
file of the ButtonDemo application.

Doing this exercise does not modify the operation of the app. To see that your modifications
work, you can modify some of the strings slightly. Please, keep the English strings in use.
You do not have to modify the Java files in this exercise.

6 © Kari Laitinen

Exercise 4:

In this exercise you should add a new user interface language into your application. If you did
the previous exercise correctly, it is easy to add a new language. I suggest that you add
Finnish user interface texts to the app. You can do this by adding a new subfolder named
values-fi to the res folder. You can do this with Windows File Explorer, or somehow with
Android Studio. When the values-fi folder exists, you can make a copy of the strings.xml
in the values folder, and put it into the values-fi folder. Now you just need to put Finnish
words into the values-fi/strings.xml file.

Here are some English-Finnish translations: Square > Neliö, Ball > Pallo, Triangle > Kolmio,
Piece of Cake >Kakkupala.

When you run your app in the emulator, it should automatically start using the Finnish texts
when you change the language to Finnish in the emulator. (Finnish is Suomi in Finnish.) You
may need to stop the application through the Settings before it changes the language.

Java files do not need to be modified in this exercise.

More user interface languages can be added to Android apps by creating new folders like
values-es, values-de, etc., and each folder will then contain .xml files with suitable texts.

7 © Kari Laitinen

Exercise 5:

If you still have enthusiasm left, you can try out what is it like to do Kotlin programming.
Kotlin is a new programming language that can be used to create Android applications.

There is a Kotlin version of this application named SquareBallRectangleKt. You can find it
in in_kotlin subfolder. To take that application in use, you must create a new Android project
in which you select Kotlin at the beginning. Package name and the name of the main activity
class are the same as in the corresponding Java project.

After creating the project, you should copy the following files from the web:
 main/java/square/ball/rectangle/SquareBallRectangleActivity.kt
 main/java/square/ball/rectangle/SquareBallRectangleView.kt
 main/res/layout/activity_square_ball_rectangle.xml

You could do the first exercise with the Kotlin version. After this you can say that you have
some experience in using the Kotlin language.

I would like to warn you that Android Studio will warn about the Kotlin programs written by
me. Most names in my programs are written with underscore characters, and for some reason
Android Studio warns about those kinds of names.

Rest of these exercises will be based on Java.

8 © Kari Laitinen

Among the Android examples you can find an app named MovingBall, whose main class is
MovingBallActivity, which is stored in MovingBallActivity.java.

The MovingBall app consist of the following files in the file hierarchy of the project:

 java/moving/ball/MovingBallActivity.java
 java/moving/ball/MovingBallView.java
 res/layout/activity_moving_ball.xml
 res/menu/color_selection_menu.xml
 res/values/strings.xml

All these files need to be copied to the local project in order to make the app operational in
the Android Studio. The latest Android Studio does not automatically create the menu folder.
You can create the menu folder as a subfolder of the res folder when you copy the file
color_selection_menu.xml.

When you create the project, you must use moving.ball as package name,
MovingBallActivity as the name of the main activity class, and activity_moving_ball as
the name of the layout file. When a project is created, the latest Android Studio may not allow
to set the names of the main activity class or the layout file. In this case you can edit the
AndroidManifest.xml file and write .MovingBallActivity in place of .MainActivity

EXERCISES WITH MovingBall

9 © Kari Laitinen

Do the following exercises after your MovingBall app works locally. Note that you have to
do a long press on the COLOR button to get the menu visible.

Exercise 1:

Add a new selectable color to the menu.

Exercise 2:

Add a Reset button to the app. With this button it must be possible to put the ball into initial
center position, and set the ball color to initial value.

As you add a new button, you should to re-arrange the buttons in the following way

You can re-arrange the buttons by modifying the activity_moving_ball.xml file. With the
attribute android:layout_weight it is possible to specify how much space is reserved for
each item inside a LinearLayout. In the original file values "0.9" and "0.1" specify that 90%
of space is reserved for MovingBallView and 10% is reserved for the LinearLayout that
contains the buttons.

10 © Kari Laitinen

The values of android:layout_weight do not need to be numbers with decimal point. The
attribute android:layout_height may need to be set to "0dp" when android:layout_weight
is used.

Exercise 3:

Improve the user interface so that you give a different color for the buttons used to move the
ball:

The ButtonDemo app shows one way to set the color of a button.

Exercise 4:

Improve the app so that the ball radius is initially 1/8 of the view width, and the ball 'jumps' to
to initial middle point if it is moved so that it hits any of the four 'walls' of the view.

11 © Kari Laitinen

Exercise 5:

By studying example app TurningArrow you'll find out how the user interface component
SeekBar can be used. With a SeekBar it is easy to adjust an integer value.

Now your task is to add a SeekBar to the MovingBall app, so that the user interface will look
like the following

With the SeekBar it must be possible to adjust the transparency of the ball on the screen. The
transparency (opacity) of a color is specified with the so-called alpha value. The Android
Paint class has a method named setAlpha() with which the alpha value can be set.

12 © Kari Laitinen

The alpha value can be in the range 0 ... 255, ranging from completely transparent color to a
fully opaque color. The application should modify the alpha value of the ball filling paint
whenever the 'progress' of the SeekBar changes. The initial alpha value could be 128.

After you have added the SeekBar to the app, you must ensure that the Reset button works
correctly. In a Reset operation, the ball alpha value must be set to its initial value, and the
'thumb' of the SeekBar must be put to its initial position.

13 © Kari Laitinen

Android has a class named GestureDetector with which it is possible to find out what kinds
of gestures the user does with the touch screen. Touch screen events can be forwarded to a
GestureDetector object that generates gesture events which include the following.

• onDown: a finger is put on the screen

• onShowPress: the screen is touched for a short time

• onLongPress: a finger remains on the screen a little longer period

• onScroll: a finger moves on the screen

• onFling: a finger is moved quickly

• onSingleTapUp: a finger is lifted

GesturesDemo is an app with which you can explore these gesture events and see when they
take place. You can find out, for example, that onSingleTapUp will not take place if a
onLongPress has happened.

Use this app first and do then the following exercises. You can keep the original features of
the program, as they can be useful when you add new features to the application. Read the
comments at the beginning of GesturesDemoActivity.java to find out how to make the app
work in your Android Studio.

EXERCISES WITH GesturesDemo

14 © Kari Laitinen

Exercise 1:

Modify the program so that it will display a ball in that screen position which is long-pressed.
This means that in the onLongPress() method a ball should be created. A ball can be most
easily created with a special class. You can get a ready-to-use Ball class by copying it from
file MovingBallsWithPointerActivity.java. You can place the Ball class into
GesturesDemoActivity.java before all other classes.

To use a Ball object, you need to define a new data member (object reference) to the
GesturesDemoView class. This new data field can be written like

Ball ball_on_screen ;

A Ball object can be created in the onLongPress() method in the following way.

ball_on_screen =
 new Ball((int) first_down_motion.getX(),
 (int) first_down_motion.getY(),
 Color.RED) ;

When the Ball object is drawn in the onDraw() method, you must ensure that the object is
really created before it is drawn. Drawing can thus be done in the following way.

 if (ball_on_screen != null)
 {
 ball_on_screen.draw(canvas) ;
 }

15 © Kari Laitinen

Exercise 2:

Improve the feature of the previous exercise so that the ball that is created to the long-pressed
position will get a random color.

In Android, colors are expressed as int values of the form 0xAARRGGBB. A color value has
components for Alpha, Red, Green, and Blue. The Alpha value must be 0xFF to get a fully
opaque color. (Prefix 0x specifies a hexadecimal value in programming.)

A random color value can be made with the expression

(int) (Math.random() * 0xFFFFFF) + 0xFF000000

Exercise 3:

Improve the program so that many balls can exist on the screen. A new ball must always
appear in the pressed position in a long press. You must now store many Ball objects. You
can store the objects into a ArrayList-based array that can be created in the following way.

ArrayList<Ball> balls_on_screen = new ArrayList<Ball>();

An ArrayList is used in the original program, which should help in this exercise. Ball
objects can be drawn with a ’foreach’ loop in the following way.

for (Ball ball_to_draw : balls_on_screen)
{
 ball_to_draw.draw(canvas) ;
}

16 © Kari Laitinen

Exercise 4:

Improve the program so that a Ball object can be deleted with an onFling() operation. This
means that you must modify the onFling() method so that it deletes that Ball object on
which the ’flinging’ begings. You must be able to remove a Ball object from the ArrayList.

In this exercise it is best to process the ArrayList starting from its end, because the newest
and ’topmost’ Ball objects are at the end. In the Ball class there exists a method named
contains_point() with which it is possible to discover if a point is inside the area of a Ball.
You do not need to modify the Ball class. Here are some source code lines that might be
helpful:
 Point first_touched_point = new Point(/* write something here */) ;
 int ball_index = balls_on_screen.size() ;
 boolean ball_to_delete_is_found = false ;

 while (ball_index > 0 && ball_to_delete_is_found == false)
 {
 ball_index -- ;

 if (balls_on_screen.get(ball_index).
 contains_point(first_touched_point))
 {
 // here you should delete a ball.

 ball_to_delete_is_found = true ;
 }
 }

17 © Kari Laitinen

Exercise 5:

Improve the program so that all existing balls get a new random color if the screen is tapped
quickly, three times within 1.5 seconds.

You can make this feature into the onSingleTapUp() method which is called when a short
tapping ends. The MotionEvent class provides a method named getEventTime() which
returns milliseconds of the moment when the event took place. If you record the milliseconds
of the last three onSingleTapUp() events it is possible to calculate when the events occur
within the last 1.5 seconds.

This feature can probably be implemented in many ways. One possibility is to use an
ArrayList where you store long values that describe event times:

ArrayList<Long> single_tap_up_event_times =
 new ArrayList<Long>() ;

The program must wait that the ArrayList contains three values before you start examining if
the values are close to each other. On the other hand, you must delete old values from the
beginning of the ArrayList so that it always contains only the last three time values. Then
you just compare the first and last value in the ArrayList. (It might be helpful to remember
that the original program keeps a certain number of text lines in an ArrayList.)

18 © Kari Laitinen

Note that these exercises are related to and app named BouncingBall. Avoid using another
app named BouncingBallsAnimation.

BouncingBall is an application that displays a ball that rotates and bounces around the screen.
The ball can be ’exploded’ by touching it with a finger (or mouse). If the ball has exploded
and the screen is touched again, the program creates a new ball that starts moving in a random
direction.

You can make this app work locally on your computer by just downloading the file
 BouncingBallActivity.java
The name of the main activity in your Android Studio project should be
BouncingBallActivity, and the package name should be bouncing.ball

Exercise 1:

Modify the app so that the direction of the ball can be changed with an onFling() operation.
The aim is that the direction of the ball will be determined by the direction of the finger
movement. The finger does not need to touch the ball.

You should study the app named GesturesDemo to find out how to react to gestures on the
touch screen. You must write something clever into the onFling() method. Here is a list of

EXERCISES WITH BouncingBall

19 © Kari Laitinen

things you have to do:

• Make the BouncingBallView class implement the GestureDetector.OnGestureListener
interface. This means that all methods of that interface must be written to the class.

• Create a GestureDetector object

• Modify onTouchEvent() method so that it ’forwards’ the MotionEvent objects to the
GestureDetector object

• Modify the onFling() method so that it can calculate a new direction for the ball.

• Add a new method to the Bouncer class to set a new direction for the ball. The name of
the method can be set_direction()

While doing this exercise, it is best first to ensure that you can actually react to ’flingings’.
You could, for example, call the enlarge() method for the ball inside the onFling() method.
When you can notice that ’flinging’ makes the ball larger, you can continue to make a new
direction for the ball.

The onFling() method gets MotionEvent objects as parameters. These parameters contain
the coordinates of the start and end points of the ’flinging’. From this information it is
possible to calculate how the finger moved in x and y directions.. By using the Math.atan2()
method it is possible to calculate a new direction for the ball.

On the following page you can find the source code of the onFling() method which
calculates a new direction for the ball.

20 © Kari Laitinen

 public boolean onFling(MotionEvent first_down_motion,
 MotionEvent last_move_motion,
 float velocity_x, float velocity_y)
 {
 float movement_x = last_move_motion.getX() - first_down_motion.getX() ;
 float movement_y = last_move_motion.getY() - first_down_motion.getY() ;

 /* The following code seems to change the direction correctly.
 We must negate the value of the y coordinate so that the
 coordinates correspond to the mathematical system used by atan2().
 */

 movement_y = -movement_y ;

 float new_direction = (float) Math.atan2(movement_y, movement_x) ;

 ball_on_screen.set_direction(new_direction) ;

 return true ;
 }

The Bouncer class must contain the following method to make the above code work.

 public void set_direction(float new_direction)
 {
 bouncer_direction = new_direction ;
 }

21 © Kari Laitinen

Exercise 2:

Improve the program so that it will count the collisions when the the ball collides with the
’walls’ of the bouncing area. These collisions can be detected in the move() method of the
Bouncer class, and the number of collisions should be displayed in the onDraw() method of
the BouncingBallView class.

There must be some mechanism to handle the information of the collisions. One way is to add
a data field like

 int collision_counter = 0 ;

to the Bouncer class. This variable can be incremented always when a collision takes place.
This way a Bouncer object knows how many times it has collided with the walls. Then there
could be a method with which another object can read the number of collisions.

22 © Kari Laitinen

Exercise 3:

Improve the program so that it becomes a kind of game in which the player tries to control the
movement of the ball so that it will not hit the walls. If the ball has hit the walls, say, 3 times,
the ball will explode and the current ’game’ ends. After a ’game’ has ended it must be
possible to start a new game.

Android has standard classes with which it is possible to build various kinds of dialogs. You
should use a dialog to find out if the user of the app wants to start a new game. Among the
teacher’s example apps there is an app named AlertDialogDemo, which shows one way to
make a dialog to start a new game.

If making a dialog seems to be a too difficult task, you can try invent some easier way to start
a new game. For example, long-pressing a certain part of the sceen could be a way to initiate
a new game.

