
1 © Kari Laitinen

This document contains JavaScript / Node.js
exercises to learn the basics of programming.

Kari Laitinen
http://www.naturalprogramming.com
2017-01-03 File created.
2018-10-29 Last modification

��

��

��

��

��

��

��

��

Exercises related to JavaScript programming

2 © Kari Laitinen

Exercise 1:

Now the program presents a number that is only minimally larger than the number given by
the user of the program. Modify the program so that it outputs a number that is twice as large
as the number typed by the user.

Exercise 2:

Improve the program further so that it prints three numbers to the user. The first number is the
twice-as-large number that is calculated in the previous exercise. The other two numbers are
numbers that follow the twice-as-large number. For example, if the user types in the number
144, your program must print numbers 288, 289, and 290. You should also modify the texts
printed by the program. If the user types in the value 17, the output of the program should
look like

 This program is a computer game. Please,
 type in a number : 17

 You typed in 17.
 My numbers are 34, 35, and 36.
 Sorry, you lost the game.
 I have more and larger numbers.

EXERCISES WITH PROGRAM Game.js

3 © Kari Laitinen

Exercise 3:

With the statement like

 process.stdout.write("\n The value of Pi is " + Math.PI + "\n") ;

you can print the value of the mathematical constant Pi to the screen. Improve the program so
that it prints, after the previous printings, how much is the original given number divided by
Pi. The character / is the division operator which you will need in this task. If the user typed
in 17, a line like the following should be printed.

 Your number divided by Pi is 5.411268065124442

Exercise 4:

The following statement prints the the square root of 2 to the screen:

 process.stdout.write("\n The square root of 2 is " + Math.sqrt(2) + "\n") ;

Improve your program so that it prints the square root of the given number. If the user
originally typed 17, a line like the following should be printed.

 The square root of your number is 4.123105625617661

4 © Kari Laitinen

Exercise 5:

The program may not work well if the user types in a negative number. The value of the given
number can be tested with an if construct like the following.

 if (given_number < 0)
 {
 process.stdout.write("\n Negative numbers not allowed! \n\n") ;
 process.exit() ;
 }

Try to figure out where into the program you should put the above if construct in order to
handle the situation when the user types in a negative number.

5 © Kari Laitinen

There are different units to express lengths and heights in the world. For example, in the U.S.
it is common to use feet and inches to express human heights, whereas in continental Europe
meters and centimeters are in use. These units relate to each other so that 1 foot is 30.48
centimeters, 1 inch is 2.54 centimeters, and 1 foot is 12 inches.

Exercise 1:

Write a program with which you can convert a human height given in centimeters to feet and
inches. The program could produce the following output when executed:

 This program can convert your height. Please,
 type in your height in centimeters : 169

 Your height in inches is 66.53543307086615
 This is 5 feet and 6 inches.

To get the number of full feet, you need to be able to round downwards numerical values.
This is possible when you use the mathematical function Math.floor(), which can be used in
the following way.

 var some_inches = 34.56 ;
 var rounded_inches = Math.floor(some_inches) ;
 process.stdout.write("\n Rounded value is " + rounded_inches) ;

The above statements would print value 34 to the screen.

EXERCISES RELATED TO CALCULATIONS AND DECISIONS

6 © Kari Laitinen

To start making this program, you can take, for example, the Game.js program and rename it
to Height.js.

You could first convert the given centimeters to inches, and after that you can start thinking
how to show the height in feet and inches.

Exercise 2:

Improve your program so that it prints additional information related to the given height. If
the given height is less than 60 centimeters, the program must notice it in the following way.

 This program can convert your height. Please,
 type in your height in centimeters : 50

 Your height in inches is 19.68503937007874
 This is 1 feet and 7 inches.

 Only 50 centimeters!
 Are you really so short?

In this exercise you must write an if construct that prints the additional text lines if the given
height is less than 60 centimeters.

7 © Kari Laitinen

Exercise 3:

Improve the if construct of your program so that the program says "That is a quite average
height." if the given height is between 160 and 190 centimeters.

The program must also say something like "You might be a giraffe." if the given height is
more than 400 centimeters.

Exercise 4:

If you have time, search the Internet and find out how to calculate an ideal weight for a
person who has a certain height. Make your program to print the user’s ideal weight.

8 © Kari Laitinen

These exercises are also related to making decisions in programs. To do decisions in
programs, you must write if-else constructs.

Exercise 1:

In JavaScript there is a concept named NaN which means 'not a number'. For example, if you
run the Evenodd.js program so that you give it the letter X when it asks a number, the
program answers

 NaN is odd.

The reason for this behavior is the fact that the text 'X' cannot be converted to a number, and
thus the variable given_number gets the value NaN.

JavaScript has a global function named isNaN() which can be used to find out if a variable
contains a NaN. This function can be used, for example, in the following way

 if (isNaN(given_number))
 {
 process.stdout.write("\n You did not type in a number.\n\n")
 }

EXERCISES WITH PROGRAM Evenodd.js

9 © Kari Laitinen

Now your task is to modify the Evenodd.js program so that you check with the isNaN()
function whether the user typed in a number or something else.

You can put the existing if-else construct inside a new else block, in the following way:

 if (isNaN(given_number))
 {
 process.stdout.write("\n You did not type in a number.\n\n")
 }
 else
 {
 // Here you should put the existing if-else construct.

 if ((given_number % 2) == 0)
 {
 ...
 }

Exercise 2:

Improve the program so that it checks whether the given number is in range 10 ... 1000, i.e.,
greater than 9 and less than 1001. If the given number does not belong to the said range, the
program must inform the user about it, for example, in the following way

 Please, give a number: 8

 8 is even.

 8 is not acceptable.

10 © Kari Laitinen

Exercise 3:

Improve the program so that the program generates a random number which will be
compared to the number given by the user.

The random number must be close to the number given by the user, so that if the user gives
the number 400, the random number must be in range 395 ... 405, or if the number given by
the user is 850, the random number is in range 845 ... 855

If the random number generated by the program is greater than the number given by the user,
the program must say that it has won the game. The program must also tell if it loses the
game, or if the numbers are the same.

By studying the following program, you can find out how to generate random numbers.
http://www.naturalprogramming.com/jsprograms/nodejsfiles3/MathDemo.js

After this modification the program becomes a game, which is not always won by the
computer. You must test the program so that all possible game results will be seen. About
every 10th game should be a draw, i.e., both 'players' have the same number. Here is a
possible output when the program is executed:

 Please, give a number: 200

 200 is even.

 200 is in range 10 ... 1000

 My number is 196. You won this game.

11 © Kari Laitinen

Exercise 1:

Write a program that prints a conversion table from miles to kilometers. The program should
produce the following output to the screen

 miles kilometers

 10.00 16.09
 20.00 32.19
 30.00 48.28
 40.00 64.37
 50.00 80.47
 60.00 96.56
 70.00 112.65
 80.00 128.74
 90.00 144.84
 100.00 160.93
 110.00 177.02

You can make this program by first making a copy of program Miles.js that we have studied
earlier. To make Miles.js work locally on your computer, you must copy the file

 http://www.naturalprogramming.com/jsprograms/nodejsfiles2/externals/tools.js

and place it in a subfolder named externals on your computer. Ensure that Miles.js works
before you start doing the exercise.

EXERCISES RELATED TO LOOPS

12 © Kari Laitinen

You can first modify the program so that it produces the above output regardless of what the
user types in from the keyboard.

You should use a while loop or a for loop in your program. If you use a while loop, the
structure of the loop can look like the following. (In place of the four dots you need to put
your own statements or expressions. Remember that it is good to indent the statements inside
the braces { and }. Indentation means that you write the statements three character positions
to the right.)

 var distance_in_miles = 10 ;

 var distance_in_kilometers ;

 while (....)
 {
 distance_in_kilometers =

 tools.printf("\n %10.2f %10.2f",
 distance_in_miles, distance_in_kilometers) ;

 distance_in_miles = distance_in_miles + 10 ;
 }

13 © Kari Laitinen

Exercise 2:

Improve the program so that it prints, after the table created in the previous exercise, a table
that contains conversions from kilometers to miles. The table could look like the following.

 kilometers miles

 10.00 6.21
 20.00 12.43
 30.00 18.64
 40.00 24.86
 50.00 31.07
 60.00 37.28
 70.00 43.50
 80.00 49.71
 90.00 55.92
 100.00 62.14
 110.00 68.35

The above output can be generated with another loop. After this exercise is completed, your
program should print two conversion tables.

14 © Kari Laitinen

Exercise 3:

Improve your program so that the user can select what kind of conversion table must be
printed. In the beginning your program should print the following text.

 This program prints conversion tables.
 Type a letter to select a conversion table

 m miles to kilometers
 k kilometers to miles

After these lines are printed your program should read one character from the keyboard.
According to the character the program should print the correct conversion table. You can
detect the given character with the following line

 var user_selection = String(input_from_user).charAt(0) ;

In this exercise you should add an if-else if-else construct to your program, and you must
put the loops that were written in previous exercises inside the blocks of the if-else if-else
construct. You should study program Likejava.js to find out how to organize the new version
of your program. The if construct can begin in the following way.

 if (user_selection == 'm' || user_selection == 'M')
 {
 ...

15 © Kari Laitinen

Exercise 4:

Add a new selectable feature to your program. By pressing the letter P the user should be able
to get a conversion table that contains conversions from pounds to kilograms. Pound is a unit
of weight that is used in some countries. One pound is 0.4536 kilograms.

Exercise 5:

Improve the program so that it does not stop after it has printed a conversion table. Instead, it
should have the exit from the program as a selectable feature. The program should print the
following menu at the beginning as well as each time after a conversion table has been
printed.

 This program prints conversion tables.
 Type a letter to select a conversion table

 m miles to kilometers
 k kilometers to miles
 p pounds to kilograms
 x exit the program

Inside the input function of the program, you should check if the user wants to exit the
program, and only in that case you would use the statement

 process.exit() ;

The input function of a JavaScript / Node.js program is such that it will always be executed
on new input until the above statement is executed.

16 © Kari Laitinen

Exercise 1:

Program Reverse.js stores numbers in an array and prints the given numbers in reverse order.
Make a copy of Reverse.js and modify it so that it takes exactly seven numbers to the array.
Also, the program must ensure that the given numbers are in the range from 1 to 40.

In this exercise you need to put a new if construct inside the input function of the program.
You should not push the given number to the array if it does not belong to the specified range.

Make the program print the given numbers in 'normal' order instead of the reverse order.

Exercise 2:

Modify the program so that it will not accept a number if the number has already been typed
in previously.

To do this, you need a loop that checks that the new given number is not among the numbers
that have already been given to the program.

You have to put the new loop inside the input function in the program. You could also use a
’boolean’ variable to store information in the case that a given number has been entered

EXERCISES RELATED TO ARRAYS

17 © Kari Laitinen

previously. You should put the new loop before the if construct that you put there in the
previous exercise.

A ’boolean’ variable can be given two values: true or false. The necessary variable and the
loop could look like:

 var number_previously_given = false ;

 // given_numbers.length now tells how many numbers have been given
 // before the current number.

 for (let index_for_previous_numbers = 0 ;
 index_for_previous_numbers < given_numbers.length ;
 index_for_previous_numbers ++)
 {
 if (given_numbers[index_for_previous_numbers] ==
 number_from_keyboard)
 {
 process.stdout.write("\n That number has already been given.\n") ;

 // Here you have to modify the ’boolean’ variable.
 }
 }

After the loop described above you should check in the if construct that the given integer is
in the range 1 ... 40 and that the integer has not been entered previously. You can include the
test of the value of the ’boolean’ variable into the boolean expression of the existing if
construct.

18 © Kari Laitinen

Exercise 3:

After you have made the exercises above, you have a program that inputs numbers that could
be used in Finnish national lottery game named Lotto.

Now you have to make the computer to generate its lottery numbers. In the folder
http://www.naturalprogramming.com/jsprograms/nodejsfilesextra/
you will find a program named RandomNumbersInArray.js. Copy suitable lines from that
program to your program so that your program will have automatically generated lottery
numbers.

After having done this, you have to improve your program so that it checks how many of the
numbers given from the keyboard belong to the generated lottery numbers. You can think that
the lottery numbers generated by the computer are the ’correct’ numbers, and by typing in
numbers from the keyboard you try to ’play’ the lottery game.

To make testing of your program easier, you should make the program print the generated
lottery numbers, so that you can enter some correct numbers from the keyboard.

Exercise 4:

Now the numbers used in the lottery game are in the range 1 ... 40. Try making this range
smaller (e.g. 1 ... 14) and see how good results you can get by playing against the computer.
In this exercise you should comment out some program lines so that it you cannot see the
numbers generated by the computer.

19 © Kari Laitinen

Strings in computer programming are data structures that store textual information. A string
usually contains a set of character codes which represent some particular text, such as a name
entered from the keyboard, or a line of text from a file. In JavaScript, textual information is
usually stored inside String objects.

Program Widename.js asks its user to type in a string from the keyboard, and after receiving
the text it prints the characters separately as well as the hexadecimal character codes of the
text. Make a copy of that program and do the following exercises.

Exercise 1:

Make the program print how many characters there are in the text that is entered from the
keyboard. By studying program StringReverse.js you can see how the length of a string can
be found out. After this modification a sample run of the program could look like

 Please, type in your name: Kari Laitinen

 Here is your name in a wider form:

 K a r i L a i t i n e n

 The characters as hexadecimal codes:

 4b 61 72 69 20 4c 61 69 74 69 6e 65 6e

 The length of your name is : 13

EXERCISES RELATED TO STRINGS

20 © Kari Laitinen

Exercise 2:

In addition to the previous printings, make the program print the given name in reverse
character order. Again, you can study StringReverse.js for help. The new output of the
program could look like

 Here is your name in reverse character order:

 nenitiaL iraK

Exercise 3:

Improve the program so that it prints your name also as Morse codes. By studying program
MorseCodes.js, you can find out how this can be done. (If you do not know what Morse
Codes are, stydy this article en.wikipedia.org/wiki/Morse_code)

As Morse code does not make a distinction between uppercase and lowercase letters, you
should convert the characters of the given name to uppercase characters with a statement like

var uppercased_name = name_from_keyboard.toUpperCase() ;

The new output of your program could look like the following:

 Your name in Morse codes is:

 -.- .- .-. .. .-.. .- .. - .. -. . -.

21 © Kari Laitinen

Exercise 4:

Here your task is to improve the program so that it also prints the characters of your name in
random order. One possibility to do this is to use a loop to remove the characters of your
name randomly, and print them one by one until there are no characters left to print.

Because String objects cannot be modified or characters deleted from an existing string, you
could convert the given name to an array of single-character strings and operate then with
that Array object. It is possible to remove or delete the elements of an array.

The following program lines create an Array object from the String object, and remove a
random element from the Array.

 var characters_in_name = Array.from(name_from_keyboard) ;

 var random_character_index =
 Math.floor(Math.random() * characters_in_name.length) ;

 var removed_character = characters_in_name[random_character_index] ;

 characters_in_name.splice(random_character_index, 1) ; // remove the character

 process.stdout.write(removed_character) ;

The Array property named length returns a value that tells how many characters are left in an
Array. You could use the boolean expression (characters_in_name.length > 0) to check
when your while loop should terminate.

22 © Kari Laitinen

Exercise 5:

Improve the feature developed in the previous exercise so that the program produces five
variations of the given name in random character order.

In this exercise you must put the loop created in the previous exercise inside a new loop. You
can re-create the Array object inside the new loop.

The program could produce the following output if the given name is "Kari Laitinen"

 Characters of your name in random order:

 airLiKnn atie
 ant LiiieaKnr
 rnniiaL iKeat
 irniaa LeKnti
 t KnieaiLnair

23 © Kari Laitinen

You can find a program named Pyramids.js in the folder
http://www.naturalprogramming.com/jsprograms/nodejsfilesextra/
This program demonstrates the use of a function in a computer program. The program has a
function named print_pyramid() that is called from the ’main’ program. A numerical value
should be given as a parameter for the print_pyramid() function. The numerical value
specifies how many levels, or lines, the pyramid will have.

Make a copy of Pyramids.js to your own folder, and do the following exercises.

Exercise 1:

Modify the last lines of the program to find out how you can adjust the size of the pyramids.
With the numerical value it is possible to specify the size, or height, of the printed pyramid.

Exercise 2:

Modify the definition of the function so that it begins in the following way:

function print_pyramid(desired_number_of_levels,
 given_pyramid_character = '=')
{
 ...

EXERCISES WITH PROGRAM Pyramids.js

24 © Kari Laitinen

Modify also the body of the last for loop in the function so that the
given_pyramid_character will be printed twice in the following way

 process.stdout.write(given_pyramid_character) ;
 process.stdout.write(given_pyramid_character) ;

After these modifications it will be possible to call the function so that you can specify in the
function call the character with which the pyramid will be printed. For example, if you call
the function in the following way

print_pyramid(8, 'X') ;

the pyramid will be printed with letter 'X' in the following way

 XX
 XXXX
 XXXXXX
 XXXXXXXX
 XXXXXXXXXX
 XXXXXXXXXXXX
 XXXXXXXXXXXXXX
 XXXXXXXXXXXXXXXX

If the function is called without specifying the character, the default character '=' will be used.

Test that the function works correctly after these modifications.

25 © Kari Laitinen

Exercise 3:

Write a new function to the program so that it will be possible to print an inverted pyramid. If
the new function is called

print_inverted_pyramid(10) ;

a upside-down pyramid like the following should appear on the screen.

 ====================
 ==================
 ================
 ==============
 ============
 ==========
 ========
 ======
 ====
 ==

You can make the new function by first copying the function print_pyramid() and renaming
it as print_inverted_pyramid(). In the new function, you should modify the header of the
outer for loop so that the pyramid levels will be printed in opposite order when compared to
the original function. You do not necessarily need to modify the body, i.e., the internal
statements, of the for loop.

26 © Kari Laitinen

Exercise 4:

Write again a new function to the program so that if the new function is called like

print_hollow_pyramid(16) ;

a hollow pyramid like the following will be printed

 ==
 ====
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 == ==
 ================================

Also this new function can be made by first making a copy of the original function.

27 © Kari Laitinen

Exercise 5:

Improve the function that prints a hollow pyramid so that the walls of the pyramid are printed
with character pairs "/\", "//" and "\\", in the following way

 /\
 //\\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 // \\
 //----------------------------\\

Note that when you want in your program to specify a string that contains two backslash
characters, you must write it "\\\\" because backslash is a so-called escape character with
which you can escape from the normal interpretation of characters. Then, two backslashes
means that your really want a backslash printed.

28 © Kari Laitinen

You can find a program named BigLetters.js in the folder
http://www.naturalprogramming.com/jsprograms/nodejsfilesextra/
This program demonstrates the use of a function in a computer program. The program has a
function named print_big_letter() that is called from the ’main’ program. A single-
character string should be given as a parameter for the print_big_letter() function. The
function then prints, if possible, the given character as a ’big letter’ to the screen.

Make a copy of BigLetters.js to your own folder, and do the following exercises.

Exercise 1:

Improve the program so that it can print also the characters ’D’ and ’E’ as big letters.

For each printable letter the program has an array of strings that contains the strings that can
be used to write the particular letter as a ’big letter’.

While doing this exercise it is good to learn to use Copy and Paste operations with your
program editor.

Inside the print_big_letter() function, the letter data is printed with a for-of loop that
processes all elements of an array. for-of loops are written with the keyword for but their
structure differs slightly from the ’traditional’ for loops. for-of loops can only be used with

EXERCISES RELATED TO FUNCTIONS WITH BigLetters.js

29 © Kari Laitinen

arrays. All for-of loops can be replaced with traditional for loops. For example, the for-of
loop

 for (let letter_data_line of letter_A_data)
 {
 process.stdout.write("\n " + letter_data_line) ;
 }

could be rewritten as the following traditional for loop

 for (let line_index = 0 ;
 line_index < letter_A_data.length ;
 line_index ++)
 {
 process.stdout.write("\n " + letter_A_data[line_index]) ;
 }

As you can see, the for-of loop is shorter, and you do not have define an index variable for it.
In the above for-of loop letter_data_line refers in turn to each string stored in the array
referenced by letter_A_data.

30 © Kari Laitinen

Exercise 2:

Currently the print_big_letter() function contains a long if ... else if ... else if
... construct. That program structure is slightly complicated as all program blocks inside the
long if ... else if ... else if ... contain a for-of loop. The structure of the program
can be simplified if we write it as follows.

function get_letter_data(given_letter)
{
 var letter_data ;

 switch (given_letter)
 {
 case 'A' : letter_data = letter_A_data ; break ;
 case 'B' : letter_data = letter_B_data ; break ;
 case 'C' : letter_data = letter_C_data ; break ;
 default: letter_data = unknown_letter_data ;
 }

 return letter_data ;
}

function print_big_letter(given_letter)
{
 var letter_data = get_letter_data(given_letter)

 for (let letter_data_line of letter_data)
 {
 process.stdout.write("\n " + letter_data_line) ;
 }

 process.stdout.write("\n") ;
}

31 © Kari Laitinen

The above two functions could replace the original print_big_letter() function of the
program. A new function named get_letter_data() is used to find and return the correct
letter data. Function get_letter_data() uses a program construct named switch-case
construct instead of the long if ... else if ... else if ... construct. switch-case
constructs can be used instead of complicated if ... else if ... else if ... constructs
in some cases. (By comparing programs Likejavascript.js and LikejavascriptSwitch.js,
you can find more information about switch-case constructs.)

In this exercise your task is to modify the program so that you replace the original
print_big_letter() function with the above two functions. You should also modify the
get_letter_data() function so that the modifications made in the previous exercise still
work.

It is very important that you try to understand how the above two methods work.

32 © Kari Laitinen

Exercise 3:

Write a new function named print_big_wide_letter() to the program. This new function
should work so that, while the original print_big_letter() prints the character ’A’ in the
following way

 XX
 XXXX
 XX XX
 XX XX
 XXXXXXXX
 XX XX
 XX XX

the new print_big_wide_letter() should print the letter ’A’ in the following way

 XXXX
 XXXXXXXX
 XXXX XXXX
 XXXX XXXX
 XXXXXXXXXXXXXXXX
 XXXX XXXX
 XXXX XXXX

The new function can use the same letter data as the original printing function. You can start
making the new function by first making a copy of print_big_letter(). In the new function
you must print each character of the letter data twice. You can use a for-of loop, a traditional
for loop, or a while loop, to print each character of a line twice.

The following statement prints a character twice

33 © Kari Laitinen

 process.stdout.write(character_in_letter_data
 + character_in_letter_data) ;

To test the new function, you must call it from the ’main’ program.

Exercise 4:

Improve the program by adding yet another new function. The new function could be named
print_big_word() and it could begin in the following way

function print_big_word(given_word)
{
 ...

If this new function is called from the ’main’ program in the following way

 print_big_word("ABBA") ;

The following should appear on the computer screen

 XX XXXXXXX XXXXXXX XX
 XXXX XX XX XX XX XXXX
 XX XX XX XX XX XX XX XX
 XX XX XXXXXXX XXXXXXX XX XX
 XXXXXXXX XX XX XX XX XXXXXXXX
 XX XX XX XX XX XX XX XX
 XX XX XXXXXXX XXXXXXX XX XX

Also in this exercise you should use the same letter data that is used by the other functions.
Note that in the original letter data definitions there exist the necessary space characters at the
end of each string in the letter data.

34 © Kari Laitinen

You can find a program named GuessAWord.js in the folder
http://www.naturalprogramming.com/jsprograms/nodejsfilesextra/
This program is a simple computer game in which the player has to try to guess the characters
of a word that is ’known’ by the game. Study the program and play the game in order to find
out how the game has been programmed.

Exercise 1:

Improve the Guess-A-Word game so that the word to be guessed is randomly taken from an
array of strings. Such an array can be created with a statement such as

 var words_to_be_guessed =
 ["VIENNA", "HELSINKI", "COPENHAGEN",
 "LONDON", "BERLIN", "AMSTERDAM"] ;

A random index for an array such as the one above can be created with the Math.random()
method with a statement like

 var random_word_index =
 Math.floor(Math.random() * words_to_be_guessed.length) ;

The Math.random() method returns a value in the range 0.0 1.0 so that the value 1.0 is
never returned. As the Math.floor() method is used, the calculated index is rounded
’downwards’ to a suitable integer value.

EXERCISES WITH PROGRAM GuessAWord.js

35 © Kari Laitinen

Exercise 2:

Improve the program so that it counts how many guesses the player makes during a game.
After a game is played, the program should print how many guesses were made. The
following variable could be useful in this task

var number_of_guesses = 0 ;

Exercise 3:

Now the program is such that it terminates when the game is finished. Modify the program so
that the game can be played several times during a single run of the program. In the above-
mentioned folder there is a program named RepeatableGame.js which should be a helpful
example.

Because you have to start a new game when the program starts running and when the user
wants to play a new game, you could use a function that initializes the game. The
initialization function should set suitable values to all global variables and arrays of the
program.

36 © Kari Laitinen

Exercise 4:

Improve the program so that it prints game statistics before the program terminates. This
means that the program shows which words were being guessed in played games, and how
many guesses were made for each word. The game statistics could look like the following.

 PLAYED WORD GUESSES

 COPENHAGEN 7
 LONDON 6
 COPENHAGEN 4
 BERLIN 5
 HELSINKI 4

As the ’played words’ will be randomly selected from an array, it is possible that the same
word is played several times.

You can use the following kind of data items to store data of games:

var games_played = 0 ;
var played_words = [] ;
var guesses_in_games = [] ;

New data should be pushed to the end of the arrays after each game is played, and the data
should be displayed on the screen in the end when the user no longer wants to play new
games.

37 © Kari Laitinen

There are two common systems for measuring temperature. Degrees of Fahrenheit (ºF) are
used in the U.S. and some other countries, while degrees of Celsius (ºC) are in use in most
European countries and in many countries throughout the world. The freezing point of water
is 0 degrees Celsius and 32 degrees Fahrenheit, 10ºC is 50ºF, 20ºC is 68ºF, 30ºC is 86ºF, and
so on. You can see that 10 degrees on the Celsius scale corresponds to 18 degrees on the
Fahrenheit scale.

Exercise 1:

Write a program that asks the user to type in a temperature from the keyboard. After receiving
the temperature value, the program must show how much that temperature is in both Degrees
Celsius and in Degrees Fahrenheit. For example, if the user of the program types in 60, the
output of your program should look something like

 Please, give a temperature: 60

 60.00 degrees Fahrenheit equals 15.56 degrees Celsius

 60.00 degrees Celsius equals 140.00 degrees Fahrenheit

You can make this program by first making a copy of program Miles.js that we have studied
earlier. By studying Miles.js you can find out how to do so-called formatted printing. To
make Miles.js work locally on your computer, you must copy the file

JavaScript Recap Exercises: A program to convert temperatures

38 © Kari Laitinen

 http://www.naturalprogramming.com/jsprograms/nodejsfiles2/externals/tools.js

and place it in a subfolder named externals on your computer. Ensure that Miles.js works
before you start doing the exercise.

Exercise 2:

Improve your program so that if the user types in the letter C, or lowercase c, the program
prints a table that looks like

 Celsius Fahrenheit

 0.00 C 32.00 F
 10.00 C 50.00 F
 20.00 C 68.00 F
 30.00 C 86.00 F
 40.00 C 104.00 F
 50.00 C 122.00 F
 60.00 C 140.00 F
 70.00 C 158.00 F
 80.00 C 176.00 F
 90.00 C 194.00 F
 100.00 C 212.00 F

You can make the table look good when you use the tools.printf() function that is used in
Miles.js.

You need first to test with an if construct if the user types in a number or not-a-number. If the

39 © Kari Laitinen

input is not a number, then you must test if the user gave the letter ’C’ or ’c’. If the input is a
number, then the program must behave as in Exercise 1. See the explanation in EXERCISES
WITH PROGRAM Evenodd.js to find out how the isNaN() function can be used.

Exercise 3:

Improve your program so that if the user types in the letter F, or lowercase f, the program
prints a table that looks something like

 Fahrenheit Celsius

 0.00 F - 17.78 C
 10.00 F - 12.22 C
 20.00 F - 6.67 C
 30.00 F - 1.11 C
 40.00 F 4.44 C
 50.00 F 10.00 C
 60.00 F 15.56 C
 70.00 F 21.11 C
 80.00 F 26.67 C
 90.00 F 32.22 C
 100.00 F 37.78 C

40 © Kari Laitinen

Exercise 4:

Improve your program further so that the temperature tables are printed with separate
functions in your program. You should call the functions when the user types in letters from
the keyboard. Thus, your ’main’ program could have statements like

 var user_selection = String(input_from_user).charAt(0) ;

 if (user_selection == 'F' || user_selection == 'f')
 {
 print_fahrenheit_to_celsius_table() ;
 }
 else if (user_selection == 'C' || user_selection == 'c')
 {
 print_celsius_to_fahrenheit_table() ;
 }
 else
 {
 process.stdout.write("\n Not valid selection.") ;
 }

This modification does not affect the behaviour of your program, but it improves the software
structure.

41 © Kari Laitinen

Animals.js is an example of object-oriented programming as it contains a class named
Animal. Objects (instances) of type Animal are created with the new operator. Methods are
called for the Animal objects with the dot operator.

Exercise 1:

Write a new method named make_stomach_empty() to class Animal. The new method could
be called in the following way

dog_object.make_stomach_empty() ;

The new method should empty the ’stomach’ of the Animal object so that an empty string ""
is assigned to stomach contents. This same operation is done when Animal object is created,
so you can copy a line from the constructor. You should test the new method by calling
make_speak() after the stomach has been emptied.

Exercise 2:

Modify method make_speak() so that it prints something like

Hello, I am ...
My stomach is empty.

in the case when stomach_contents references just an empty string. The stomach is empty if
method feed() has not been called for an Animal object, or if the stomach has been emptied

EXERCISES WITH PROGRAM Animals.js

42 © Kari Laitinen

with the method that you wrote in the previous exercise. You can use the standard string
property length to check if the stomach is empty. The length property can be used, for
example, in the following way

if (this.stomach_contents.length == 0)
{
 // stomach_contents references an empty string.
 ...

If the stomach is not empty, the original output must be printed.

Exercise 3:

Modify the feed() method so that the animal complains if it has already eaten the given food.
For example, if an Animal object is fed with the following two statements

dog_object.feed("potatoes") ;
dog_object.feed("potatoes") ;

the later call to the feed() method should produce a line like the following

 I do not want more potatoes.

The feed() method must check if the stomach_contents string already contains the string
that it receives as a parameter, and it must print a complaint if that is true. You must check if
a string is contained in another string. The string method indexOf() can be used to do this:

if (some_string.indexOf(another_string) != -1)
{
 // another_string is part of some_string

43 © Kari Laitinen

Exercise 4:

Rewrite the constructor of the Animal class in the following way:

 constructor(given_parameter = "default animal",
 given_animal_name = "Nameless")
 {
 if (typeof given_parameter == "string" ||
 given_parameter instanceof String)
 {
 this.species_name = given_parameter ;
 this.stomach_contents = "" ;
 this.animal_name = given_animal_name ;
 }
 else if (given_parameter instanceof Animal)
 {
 this.species_name = given_parameter.species_name ;
 this.stomach_contents = given_parameter.stomach_contents ;
 this.animal_name = given_parameter.animal_name ;
 }
 else
 {
 process.stdout.write(
 "\n Unacceptable object was given to Animal constructor.\n") ;
 }
 }

This new constructor adds a new data field this.animal_name to each Animal object. It

44 © Kari Laitinen

makes it possible to create an Animal object so that a name is given to the animal in the
following way

var cat_object = new Animal("cat", "Ludwig") ;

After you have rewritten the constructor, modify method make_speak() so that the new data
field is printed, for example, in the following way.

Hello, I am a cat named Ludwig.
I have eaten: ...

The new constructor has default values for its parameters. With the new constructor it is
possible to create an Animal object without giving any parameters, in the following way

var default_animal = new Animal() ;

Test what is printed to the screen when you call the make_speak() method for a ’default’
Animal.

Exercise 5:

Modify program Animals.js so that you add there a new class named Zoo. You can write this
new class after the Animal class. Objects of class Zoo should be objects that contain a set of
Animal objects.

The Zoo class should have a method named add_animal() with which a new Animal object
can be added to the zoo. Moreover, the Zoo class should contain a method named
make_animals_speak(). Inside this method the make_speak() method should be called for

45 © Kari Laitinen

each Animal object. The Zoo class can look like the following:

class Zoo
{
 constructor()
 {
 this.animals_in_zoo = [] ;
 }

 add_animal(new_animal_to_zoo)
 {
 // push the new Animal object to the end of the array
 }

 make_animals_speak()
 {
 // call make_speak() for all Animal objects in a loop
 }
}

This Zoo class contains an array which stores Animal objects. By studying program
Olympics.js, you can find out how an array of objects can be used.

You can test your new Zoo class with the following statements:

46 © Kari Laitinen

var test_zoo = new Zoo() ;

test_zoo.add_animal(cat_object) ;
test_zoo.add_animal(dog_object) ;
test_zoo.add_animal(another_cat) ;

test_zoo.make_animals_speak() ;

Exercise 6:

If you have still time and enthusiasm left, write a method named feed_all() to the Zoo class.
With this method it should be possible to feed all animals of the zoo with the same food
string.

47 © Kari Laitinen

Exercise 1:

Program Olympics.js has an initialized array to store objects of type Olympics. Update the
olympics list of the program so that the latest known Summer Olympic games have Olympics
objects created. You can also add information about future Summer Olympics.

Ensure that the program works correctly after these modifications.

Exercise 2:

Create a new class named WinterOlympics so that the new WinterOlympics class will be a
subclass of the original Olympics class. The first definition of the WinterOlympics class could
be the following

class WinterOlympics extends Olympics
{
 constructor(given_olympic_year,
 given_olympic_city,
 given_olympic_country)
 {
 super(given_olympic_year,
 given_olympic_city,
 given_olympic_country) ;
 }
}

EXERCISES WITH PROGRAM Olympics.js

48 © Kari Laitinen

You can put the new WinterOlympics class right after the Olympics class in the program.
With the keyword extends we can make WinterOlympics to inherit the Olympics class. We
can say also that class WinterOlympics is derived from the Olympics class. Class Olympics is
is the superclass of class WinterOlympics. With the keyword super the constructor of
superclass can be called.

When you write the WinterOlympics class as shown above, it will behave in the same way as
its superclass Olympics.

You can test your new class by adding the following object to the array

 new WinterOlympics(2006, "Turin", "Italy")

It is possible to have both Olympics and WinterOlympics objects in the same array. If your
program can find the data of Turin olympics, you have successfully carried out this exercise.

Exercise 3:

Improve the new WinterOlympics class by writing a new version of method
get_full_data() into it. The new method should return a text that contains the word 'winter'.
The output of the method could look like the following

 In 2006, Winter Olympics were held in Turin, Italy.

In this exercise you can copy the corresponding method from class Olympics, and modify the
text that is generated by the method.

49 © Kari Laitinen

When a subclass contains a method that has the same name and similar parameters as a
method in the superclass, we say that the method is overridden in the subclass. In this
exercise we override the method get_full_data() and the new version of the method will
automatically be used for WinterOlympics objects.

Exercise 4:

Earlier the winter and summer olympics were orginized during the same year. For example,
in 1984 the winter olympics were in Sarajevo, Yogoslavia, and the summer olympics were in
Los Angeles, U.S.A.

If you add WinterOlympics objects that describe these earlier winter games to the olympics
list of the program, there will be problems. The search algorithm finds only the first olympics
that were held in the given year. If there are two objects for the same year, the latter object
will not be found.

Modify the program so that it will always process all objects of the list of olympics, and print
data of those objects that contain the given year.

One way to do this is that you use another array to store those Olympics objects that need to
be printed. Now the program has the variable

 var selected_olympics = null ;

You can modify this statement so that you specify an empty array in the following way

50 © Kari Laitinen

 var selected_olympics = [] ;

Then you can go through all Olympics objects of olympics_list, and with the push() method
add those objects whose year matches the given year to the above array.

After all Olympics objects have been checked, you can test the length of the above array, and
print information about as many Olympics as there are objects in the above array.

To test the new version of the program you should add more WinterOlympics objects to the
initialized array.

Exercise 5:

Now the Olympics.js program accepts only numbers as input from the user. Improve the
program so that if the user types in the word "summer", the program will print data of all
summer olympic games. Then, if the user types "winter", the data of all winter games will be
printed.

JavaScript has a built-in global function named isNaN() which returns true if something is
’not-a-number’. You can use this function to test if the user typed in a number or a word. The
function can be called in the following way

 if (isNaN(input_from_user))
 {
 var given_text = String(input_from_user).trim() ;
 ...

51 © Kari Laitinen

As shown above, you should convert the user input to a string and trim() it before you start
checking what word was typed.

Another you have to solve while doing this exercise is to find out how you decide whether an
object in the array is of type Olympics or of type WinterOlympics. You can solve this problem
by using the instanceof operator of JavaScript.

The boolean expression in the following if construct will be true if olympics_object refers
to an object that is of type WinterOlympics or of some subtype of WinterOlympics.

 if (olympics_object instanceof WinterOlympics)
 {
 ...
 }

Then, if you would like to know whether some olympics object is of type Olympics, you can
use an if construct such as

 if (! (olympics_object instanceof WinterOlympics))
 {
 ...
 }

In this exercise, you cannot use the instanceof operator to test whether an object is of type
Olympics. The reason for this is that instanceof returns true also when the object on its left
side is an object of some subclass of the class given on the right side of the operator.

52 © Kari Laitinen

Exercise 6:

If the user types in a text but the text is not "summer" or "winter", your program should
suppose that the user typed in the name of a country or a city.

Make an else part to your program so that it searches all Olympics or WinterOlympics
objects that contain the given text. For example, if the user types "U.S.A.", the program
should print a list like the following:

 In 1904, Olympic Games were held in St. Louis, U.S.A..
 In 1932, Olympic Games were held in Los Angeles, U.S.A..
 In 1984, Olympic Games were held in Los Angeles, U.S.A..
 In 1996, Olympic Games were held in Atlanta, U.S.A..

Or if the user types "Italy", the program should print something like

 In 1960, Olympic Games were held in Rome, Italy.
 In 2006, Winter Olympics were held in Turin, Italy.

53 © Kari Laitinen

CapitalsMap.js is a program that shows how to use a Map object in JavaScript. Map is a built-
in standard class that can be used in all JavaScript programs. A Map can store information so
that it is easy to find the stored information.

A Map can store key-value pairs, and when you know the ’key’ it is easy to get the
correrponding ’value’. It is also possible to ask a Map if it has a ’value’ associated with a
certain ’key’.

Keys and values stored in a Map can be objects or primitive data items.

By studying CapitalsMap.js you can find out that

• method set() can be used to put a new key-value pair to a Map

• with method has() you can check whether a ’key’ has a ’value’ in the Map

• method get() returns the ’value’ associated the the specified ’key’

EXERCISES WITH PROGRAM CapitalsMap.js

54 © Kari Laitinen

Exercise 1:

Add new Country-Capital pairs to the Map in the program, and check that the program works
with the new data.

Exercise 2:

Improve the program so that when it doesn't find the capital associated with the given country
name, it prints a list of all countries whose capitals the program knows.

The program should thus work in the following way:

 This program may know the capital of a country.
 Type in the name of some country: Australia

 Sorry, I do not know the capital of Australia.

 I know only the capitals of the following countries:
 Afghanistan Austria Belgium Chile Denmark England
 Finland France Holland Hungary Iceland Israel
 Italy Japan Norway Pakistan Poland Portugal
 Russia Spain Sweden Usa

Here you should print all the 'keys' used in the Map.

55 © Kari Laitinen

You can get the keys with the following statement

 var country_names = countries_and_capitals.keys() ;

and you can print the country names with a for-of loop in the following way

 for (let country_name of country_names)
 {
 process.stdout.write(" " + country_name) ;
 }

You can try the above solution first, but to completely do this exercise, you should print the
country names in alphabetical order, and you should find out a way how you print no more
than 6 country names on each line.

You can get a sorted array from the above country_names with the statement:

 var sorted_country_names = Array.from(country_names).sort() ;

By printing the country names of this sorted array, you get the names in alphabetical order.
The data structure returned by the keys() method of Map is not a real array although it can be
used in for-of loop like an array.

56 © Kari Laitinen

Exercise 3:

Add the following class to the beginning of the program

class City
{
 constructor(given_city_name,
 given_population,
 given_web_address)
 {
 this.city_name = given_city_name ;
 this.population = given_population ;
 this.web_address = given_web_address ;
 }

 get_city_name()
 {
 return this.city_name ;
 }

 print_city_info()
 {
 process.stdout.write("\n " + this.city_name + " has population "
 + this.population + "\n More information at: "
 + this.web_address + "\n\n") ;
 }
}

When you have the City class in use, you can put key-value pairs to the Map in the following
way

57 © Kari Laitinen

countries_and_capitals.set("Sweden", new City("Stockholm", 940000,
 "www.stockholm.se")) ;

Your task is here now to modify the program so that it can handle the situation when the
'value' in the Map is a City object. This means that the program must call the
print_city_info() method in the following way:

 This program may know the capital of a country.
 Type in the name of some country: Sweden

 The capital of Sweden is Stockholm.

 Stockholm has population 940000
 More information at: www.stockholm.se

You can use the instanceof operator to find out if there is a City object as a 'value' in the
Map.

 var capital_data = countries_and_capitals.get(country_name) ;

 if (capital_data instanceof City)
 {

If the 'value' is not a City object, the program can assume that it is a string.

58 © Kari Laitinen

Exercise 4:

This exercise does not continue the development made in the previous exercises. Therefore,
make a copy of the current version of your program. Your task here is to modify the program
so that it becomes a game in which the user must know the capital of a country or the country
of a capital.

The name of the copied program could be CapitalsGame.js

When this program is executed it automatically selects either a capital or a country and
presents it to the user.

If the program is showing a country name, the user should respond with the corresponding
capital name.

If the program is showing a capital name the user should respond with the corresponding
country name.

In earlier exercises you have learned how to make random selections in a program.

In the previous exercise you learned that with the keys() method you can get a list of keys.
There is a corresponding method named values() with which you can get a list of values
from the Map.

Note that you must be able to handle the case when a 'value' is a City object.

