
CHAPTER 10

CLASSES AND OBJECTS

Although the keyword class has been used in every example program of this book, only
now, after having studied the fundamentals of programming, we can really start exploring
the nature of Java classes. Class is a very fundamental concept in modern computer pro-
gramming. In the programs that we have studied in the previous chapters, classes have
played a minor role. Because it is mandatory that all methods of a Java program are writ-
ten inside some class, we always have had a class declaration in our programs. From now
on, however, we’ll start using more advanced classes in our programs. You will learn that
classes can be your own (data) types with which you can create the kind of objects you
want.

As classes are used to create objects, programming based on classes is called object-ori-
ented programming. Therefore, this chapter is the beginning of Part III "Object-Oriented
Programming" in this book. In this first object-oriented chapter, we’ll examine simple
classes that can be used to declare and create objects. In further chapters, the concept of a
class will be elaborated. It is not possible to explain the concept of a class with a few
words. Therefore, as the concept becomes clearer in further chapters, you might consider
the rest of this book as a long answer to the question: "What is a class?"

These are sample pages from Kari Laitinen’s book A Natural Introduction to
Computer Programming with Java. For more information, please visit
http://www.naturalprogramming.com/javabook.html

290 Chapter 10: Classes and objects

10.1 Classes, fields, and instance methods

The classes that we have studied in the previous chapters have been just program struc-
tures that contain a set of static methods, often only the single static main() method. Now
we are, finally, going to study classes that are the "real" classes that can be used to create
objects, that represent (data) types specified by a programmer. Designing these kinds of
classes can be called object-oriented programming, and, therefore, this chapter starts the
object-oriented Part III of this book.

We need classes in order to create objects. We have already, in Chapter 8, studied
objects of type String. String is a standard class of Java, and, as that class is automati-
cally available for Java programs, we can specify a string reference with a statement like

String some_string ;

Then a String object can be created, for example, with a statement like

some_string = "xxxxxx" ;

The above statement creates a String object whose content is "xxxxxx", a character
string in which letter x is repeated 6 times. The statement also makes some_string refer-
ence the created object. When the string reference some_string references a String
object, it stores the address of the object in the heap memory.

In the case of String objects, the class to create objects already exists, and that
makes programming quite easy. When you want to create some special kinds of objects,
you first have to declare a class that specifies the nature of your objects. Programs Rect-
angles.java and BankSimple.java are examples that demonstrate simple classes and the
creation of objects that are based on the simple classes. The structure of both programs is
the following

class SomeClass
{
 Declarations of data items (fields).

 Declarations of instance methods.
}

class SomeTesterClass
{
 public static void main(String[] not_in_use)
 {
 SomeClass some_object = new SomeClass() ;

 ...
 }
}

The program files Rectangles.java and BankSimple.java both contain two classes. First
there is a "real" class that can be used to create objects, and then there is another class that
contains the main() method which creates the objects.

The classes that are used to create objects usually have data declarations which are
called fields in programming terminology. The class Rectangle of program Rectan-
gles.java begins with the following lines

class Rectangle
{
 int rectangle_width ;
 int rectangle_height ;
 char filling_character ;

10.1 Classes, fields, and instance methods 291

on which rectangle_width, rectangle_height, and filling_character are
(data) fields that belong to every object of type Rectangle. These fields specify how a
simple rectangle looks when it is printed onto the screen of a computer.

The methods of a class that is used to create objects are usually non-static methods
that are said to be instance methods. They are instance methods because objects of a class
are also called instances of a class, and these methods can only be called in relation to an
instance. For example, the method print_rectangle() in Rectangles.java is called
with the statement

first_rectangle.print_rectangle() ;

where first_rectangle is a reference to an object of type Rectangle (an instance of
class Rectangle) and method print_rectangle() is called in relation to the object
referenced by first_rectangle. When print_rectangle() is called this way, it
prints the Rectangle object for which it was called, and it uses those data fields
(rectangle_width, rectangle_height, and filling_character) that exist inside
the object referenced by first_rectangle. (The verb "invoke" is also used when the
calling of an instance method is discussed. To describe the activity of calling an instance
method for an object, it is commons to say that "a method is invoked for an object".)

It is important to understand that every object of a class contains copies of all data
fields of the class. Every object contains instances of the fields of its class. For example,
when we create an object of class Rectangle in the following way

Rectangle first_rectangle = new Rectangle() ;

we actually create a data structure that contains all the data fields declared in class Rect-
angle. The object referenced by first_rectangle contains its own
rectangle_width, rectangle_height, and filling_character. These internal
data fields are accessed through the methods of class Rectangle. For example, when the
statement

first_rectangle.initialize_rectangle(7, 4, 'Z') ;

is executed, method initialize_rectangle() sets the values of the fields inside the
object referenced by first_rectangle so that rectangle_width is given the value 7,
rectangle_height is set to 4, and filling_character is set to contain the character
code of uppercase letter Z. Method initialize_rectangle() does not know the name
of the object reference when it is executed, but the dot operator . binds it to the correct
object in the call. The above call to method initialize_rectangle() could be
explained in a longer way as "Go and execute the statements inside method
initialize_rectangle() using the data fields inside the object referenced by
first_rectangle."

As you already have studied arrays and strings, which also are objects, it should not
be very difficult to understand how objects are created to the heap memory, and how they
are referenced with a reference in the stack memory. A statement like

Rectangle first_rectangle ;

declares an object reference that can be used to reference (or to point to) an object, but this
statement does not yet create any objects. An object can be created by using the new oper-
ator in a statement like

first_rectangle = new Rectangle() ;

This statement creates a Rectangle object to the heap memory, and makes
first_rectangle reference the created object. An object reference references an object
so that it stores the physical memory address of the object. Figure 10-1 shows how the
Rectangle objects of program Rectangles.java are referenced by the references
first_rectangle and second_rectangle. Figure 10-1 describes the situation right
before the method main() of program Rectangles.java terminates.

292 Chapter 10: Classes and objects

// Rectangles.java

class Rectangle
{
 int rectangle_width ;
 int rectangle_height ;
 char filling_character ;

 public void initialize_rectangle(int given_rectangle_width,
 int given_rectangle_height,
 char given_filling_character)
 {
 rectangle_width = given_rectangle_width ;
 rectangle_height = given_rectangle_height ;
 filling_character = given_filling_character ;
 }

 public void print_rectangle()
 {
 for (int number_of_rows_printed = 0 ;
 number_of_rows_printed < rectangle_height ;
 number_of_rows_printed ++)
 {
 System.out.print("\n ") ;

 for (int number_of_characters_printed = 0 ;
 number_of_characters_printed < rectangle_width ;
 number_of_characters_printed ++)
 {
 System.out.print(filling_character) ;
 }
 }

 System.out.print("\n") ;
 }
}

Class Rectangle has two methods, initialize_rectangle() and
print_rectangle(), which are written inside the class declaration in the same way as
the methods that we have seen before. Because the keyword static is not used in the
declaration of these methods, they are non-static instance methods than can only be
called in relation to a Rectangle object according to the following statement syntax

 object_reference_name.method_name(...) ;

Rectangles.java - 1: The declaration of class Rectangle.

Class Rectangle differs from classes we have
seen before so that data items are declared before
the methods of the class. rectangle_width,
rectangle_height, and filling_character
are data items that belong to every object of type
Rectangle. These data items are called fields in
programming terminology. Fields are data mem-
bers of a class.

The methods of a class can
freely read and write the data fields,
the classwide data, that are declared
at the beginning of the class.

10.1 Classes, fields, and instance methods 293

class Rectangles
{
 public static void main(String[] not_in_use)
 {
 Rectangle first_rectangle = new Rectangle() ;

 first_rectangle.initialize_rectangle(7, 4, 'Z') ;
 first_rectangle.print_rectangle() ;

 Rectangle second_rectangle = new Rectangle() ;

 second_rectangle.initialize_rectangle(12, 3, 'X') ;
 second_rectangle.print_rectangle() ;
 }
}

Class Rectangles follows class
Rectangle in file Rectangles.java.
Class Rectangles exists only because
it is logical to have a different class
where the main() method may be
placed. The main() method could
alternatively be placed inside class
Rectangle.

This statement declares a reference
first_rectangle that can reference a Rectangle
object, creates a Rectangle object, and makes
first_rectangle reference the created object.
This statement could be replaced with the statements
 Rectangle first_rectangle ;
 first_rectangle = new Rectangle() ;

Rectangles.java - 2. The main() method of class Rectangles that creates two Rectangle objects.

After its creation, an object of type Rectangle contains
the data fields rectangle_width, rectangle_height,
and filling_character, but these fields contain only
zeroes. Method initialize_rectangle() can be used
to give meaningful values to these fields.

Rectangles.java - X. The rectangles are made by printing a single character repeatedly.

D:\javafiles3>java Rectangles

 ZZZZZZZ
 ZZZZZZZ
 ZZZZZZZ
 ZZZZZZZ

 XXXXXXXXXXXX
 XXXXXXXXXXXX

 XXXXXXXXXXXX

As this chapter belongs to Part III of this book,
the example programs are in a directory (folder)
that has number 3 in its name.

This is the Rectangle object refer-
enced by second_rectangle. The
printed rectangle is 12 character posi-
tions wide, 3 rows high, and filled with
character X.

294 Chapter 10: Classes and objects

The other simple program BankSimple.java shows how a simple bank account class
can be declared and used. A banking program may be a useful example, because a large
portion of the world's computing power is consumed making calculations related to
money. Computers calculate, for example, wages, share prices, and maintain information
about money stored in accounts in banks. While studying program BankSimple.java, you
should bear in mind that real banking programs are much more complicated. The program
could not be used in a real bank, but it does demonstrate some operations with objects.

The BankAccount objects created in program BankSimple.java are somewhat
more complicated than the objects created in program Rectangles.java. The reason for
this complication is that BankAccount objects have a string as a data field, and strings are
objects themselves. The field account_owner of class BankAccount references a
String object. When a BankAccount object is initialized with method initialize_-
account(), account_owner starts to reference a separate String object where the
owner’s name is stored. Figure 10-2 shows what the objects look like in the main memory
of a computer when all the objects of program BankSimple.java have been created.

In order to design useful classes, we should learn to think in object-oriented way. In
object-oriented thinking we should think first about data. After having thought what set of
data fields could form an entity, an object, we should think what kinds of methods are
needed to process that data. In the case of class BankAccount in program BankSim-
ple.java, object-oriented thinking goes as follows:

• BankAccount objects are such that every object contains the name of the account
owner (a string), the number of the account, and the balance of the account (i.e.
how much money is currently stored in the account).

• As class BankAccount has three methods, there are three different possibilities to
do something with BankAccount objects.

• By calling method initialize_account() for a BankAccount object, it is pos-
sible to initialize data fields account_owner, account_number, and ac-
count_balance.

• It is possible to increase the value of data field account_balance for a BankAc-
count object by calling method deposit_money().

• By calling show_account_data() it is possible to see all data inside a BankAc-
count object.

A central idea in the design of classes is that data is encapsulated inside objects, and
the data is accessed only through calls to methods. This principle is used both in program
Rectangles.java and in BankSimple.java. Although the data fields of a class should be
accessed only by the methods of the same class, it is possible to write programs in which
data fields are accessed by the methods of a foreign class. For example, the data field
account_balance of a BankAccount object can be accessed from method main().
The statement

first_account.account_balance =
 first_account.account_balance + 2222.11 ;

would be acceptable in the method main() of BankSimple.java in place of the method
call

first_account.deposit_money(2222.11) ;

If you want to prevent other classes from accessing the fields of a class, the fields should
be declared with keyword private. On the other hand, fields declared with keyword
public are automatically visible to all methods in all classes. Program Person.java pro-
vides an example of a class with public fields. Classes like the class Person in program
Person.java are not, however, very object-oriented classes, and they should not be used
too often. The accessibility of class members will be discussed more thoroughly on page
398.

10.1 Classes, fields, and instance methods 295

Figure 10-1. The objects of program Rectangles.java in the main memory.

This is the second created Rectangle object in the heap
memory. Here we suppose that the numerical address of the
object is C93464H. This address is stored in the reference
second_rectangle as it is referencing this object. I have
drawn some gap between the two Rectangle objects in
order to make this drawing clearer, but in reality the mem-
ory management system may not leave any gap between
objects. The memory management system may also put the
objects in a different order than they are in this drawing, and
it may add some management information to every object.

These are the two object refer-
ences in the stack memory.
Because the stack grows
towards small memory
addresses, the reference that is
declared later in the main()
method is in a smaller memory
address.

rectangle_width 4 bytes (int)

rectangle_height 4 bytes (int)

filling_character 2 bytes (char)

4

’Z’

7

This is the first created Rect-
angle object in the heap
memory. It is referenced by
first_rectangle.

C93464H

 C9344CH:

C9344CH

 C93464H:

second_rectangle 4 bytes (reference)

first_rectangle 4 bytes (reference)

rectangle_width 4 bytes (int)

rectangle_height 4 bytes (int)

filling_character 2 bytes (char)

3

’X’

12

Individual bytes of the main
memory are not described
here. For example, this section
that is drawn as a single piece
of memory represents four
bytes of memory. This draw-
ing style shall continue in the
figures that you find later in
this book.

By counting the bytes that individual
fields of a Rectangle object occupy,
we find out that a Rectangle object
needs 10 bytes of memory. In reality,
when objects are created, some extra
bytes are reserved in addition to the
bytes needed for the data fields. The
extra bytes are used by system meth-
ods that take care about objects.

296 Chapter 10: Classes and objects

// BankSimple.java (c) Kari Laitinen

class BankAccount
{
 String account_owner ;
 long account_number ;
 double account_balance ;

 public void initialize_account(String given_name,
 long given_account_number)
 {
 account_owner = given_name ;
 account_number = given_account_number ;
 account_balance = 0 ;
 }

 public void show_account_data()
 {
 System.out.print("\n\nB A N K A C C O U N T D A T A : "
 + "\n Account owner : " + account_owner
 + "\n Account number: " + account_number
 + "\n Current balance: " + account_balance) ;
 }

 public void deposit_money(double amount_to_deposit)
 {
 System.out.print("\n\nTRANSACTION FOR ACCOUNT OF " + account_owner
 + " (Account number " + account_number + ")") ;
 System.out.print("\n Amount deposited: " + amount_to_deposit
 + "\n Old account balance: " + account_balance) ;
 account_balance = account_balance + amount_to_deposit ;
 System.out.print(" New balance: " + account_balance) ;
 }
}

These three data items, a string and
two variables, are the data fields of
class BankAccount. Every BankAc-
count object will have its own copy of
these fields.

The basic banking operations are mathematically simple. An addition
operation must be carried out in order to make a deposit to an account.
amount_to_deposit is given as a parameter for this method. Instance
methods handle parameters in the same way as the static methods that we
studied in the previous chapter.

BankSimple.java - 1: The declaration of class BankAccount.

Method initialize_account() can
be used to give initial values to the data
fields account_owner and account_-
number. The field account_balance is set
to zero. It is important to note that a method
does not know for which object it was called.
Method initialize_account() initial-
izes the three fields, but it does not know
which BankAccount object the fields
belong to. Only the caller knows for which
object it called the method.

10.1 Classes, fields, and instance methods 297

class BankSimple
{
 public static void main(String[] not_in_use)
 {
 BankAccount first_account = new BankAccount() ;
 BankAccount second_account = new BankAccount() ;

 first_account.initialize_account("James Bond", 77007007) ;
 second_account.initialize_account("Philip Marlowe", 22003004) ;

 first_account.deposit_money(5566.77) ;
 second_account.deposit_money(9988.77) ;
 first_account.deposit_money(2222.11) ;

 first_account.show_account_data() ;
 second_account.show_account_data() ;
 }
}

first_account and second_account are object references that are made to reference
the two BankAccount objects that are created to the heap memory. Both objects contain the
three data fields account_owner, account_number, and account_balance. The fields
inside the objects are modified by calling methods for the objects.

BankSimple.java - 2. Class BankSimple that contains the method main().

BankSimple.java - X. The program always produces the same output.

D:\javafiles3>java BankSimple

TRANSACTION FOR ACCOUNT OF James Bond (Account number 77007007)
 Amount deposited: 5566.77
 Old account balance: 0.0 New balance: 5566.77

TRANSACTION FOR ACCOUNT OF Philip Marlowe (Account number 22003004)
 Amount deposited: 9988.77
 Old account balance: 0.0 New balance: 9988.77

TRANSACTION FOR ACCOUNT OF James Bond (Account number 77007007)
 Amount deposited: 2222.11
 Old account balance: 5566.77 New balance: 7788.880000000001

B A N K A C C O U N T D A T A :
 Account owner : James Bond
 Account number: 77007007
 Current balance: 7788.880000000001

B A N K A C C O U N T D A T A :
 Account owner : Philip Marlowe
 Account number: 22003004

 Current balance: 9988.77

298 Chapter 10: Classes and objects

// Person.java (c) Kari Laitinen

class Person
{
 public String person_name ;
 public int year_of_birth ;
 public String country_of_origin ;

 public void print_person_data()
 {
 System.out.print("\n " + person_name + " was born in "
 + country_of_origin + " in " + year_of_birth) ;
 }
}

class PersonTest
{
 public static void main(String[] not_in_use)
 {
 Person computing_pioneer = new Person() ;

 computing_pioneer.person_name = "Alan Turing" ;
 computing_pioneer.year_of_birth = 1912 ;
 computing_pioneer.country_of_origin = "England" ;

 Person another_computing_pioneer = new Person() ;

 another_computing_pioneer.person_name = "Konrad Zuse" ;
 another_computing_pioneer.year_of_birth = 1910 ;
 another_computing_pioneer.country_of_origin = "Germany" ;

 computing_pioneer.print_person_data() ;
 another_computing_pioneer.print_person_data() ;
 }
}

The fields of class Person are declared
with keyword public, which makes these
fields accessible for methods in all other
classes. The keyword public is an access
modifier. Other access modifiers include
keywords private and protected. Also a
missing access modifier affects the visibility
of a field. See page 398 for more information
related to the visibility of class members.

The fields inside a Person object can be referred to by using
the dot operator (.) which is also used when methods are called for
objects.

Person.java - 1. A class that has public data fields.

Person.java - X. These lines are printed by calling method print_person_data() twice.

D:\javafiles3>java PersonTest

 Alan Turing was born in England in 1912
 Konrad Zuse was born in Germany in 1910

The class name PersonTest
is written on the command
line because that class con-
tains the main() method.

10.1 Classes, fields, and instance methods 299

Figure 10-2. The objects of program BankSimple.java in the main memory.

These are the two BankAc-
count objects in the heap
memory. The marked numeri-
cal addresses of the objects are
again "fictitious" because we
do not know into which
addresses a computer would
put these objects, and how
much gap there is between
objects. The object references
first_account and sec-
ond_account on the stack
reference these objects by
storing their addresses.

These are the two object refer-
ences in the stack memory.
Because the stack grows
towards small memory
addresses, the reference that is
declared later in the program is
in a smaller memory address.

"P
hi
li
p
Ma
rl
ow
e"

account_owner 4 bytes (reference)

account_number 8 bytes (long)

account_balance 8 bytes (double)

"J
am
es
 B
on
d"

22003004

9988.77

77007007

7788.88

C934B0H

C934E4H account_owner 4 bytes (reference)

account_number 8 bytes (long)

account_balance 8 bytes (double)

These are the String objects
that are created after the two
BankAccount objects. The
first data field of each
BankAccount object refer-
ences a String object.

C93494H

 C93478H:

C93478H

 C93494H:

 C934B0H:

 C934E4H:

This address is
stored inside the
first BankAc-
count object.

second_account 4 bytes (reference)

first_account 4 bytes (reference)

300 Chapter 10: Classes and objects

10.2 Constructors are methods that build objects

Every class declaration introduces a new type, analogous to the basic built-in types char,
int, double, etc. Once a class is declared, we can create "variables" based on the
declared class. The "variables" based on class declarations are called objects because they
are different from the traditional variables of type char, int, double, etc. Objects are
more complex data items than conventional variables. In most cases, objects need to be
initialized somehow when they are declared. We can say that objects need to be con-
structed before they are ready for use. In program BankSimple.java, there is a method to
initialize objects. But because it is very common that objects have to be initialized, Java
classes are usually equipped with special methods called constructors that can initialize
objects. Initialization usually means that data fields are given certain initial values.

Program BankBetter.java has a BankAccount class that is equipped with a con-
structor. The BankAccount class in program BankBetter.java has the same data fields as
the class in program BankSimple.java. The difference between these two programs is that
the BankAccount class in program BankBetter.java has more methods, and it does not
need the method initialize_account() because it has a constructor. Program Bank-
Better.java is an advanced version of our previous example since the methods of its
BankAccount class allow money to be withdrawn from BankAccount objects, and
money to be transferred between two BankAccount objects.

Constructors are like other methods of a class, and they are written according to the
normal Java rules for methods. The following facts should be remembered about construc-
tors:

• A constructor method must have the same name as the class where it is declared. A
constructor of a class named ClassName is of the form

public ClassName(...)
{
 ...
}

• Constructor methods may not have a type. They cannot even be of type void.

• The compiler generates a call to a constructor when it discovers that an object is
being created in a program. For example, when the compiler finds a statement like

ClassName object_name = new ClassName("XXX", 222) ;

it calls a constructor of class ClassName, and that class must have a constructor
that takes a string and an integer value as parameters.

• As we shall soon see, a class can have several overloaded constructor methods
which take different kinds of actual parameters.When an object is created, the com-
piler selects a constructor that has matching formal parameters.

Executing the internal statements of a constructor method is just one of the activities
that happen when an object is created. The following is a longer list of activities in the pro-
cess of the creation of an object

• Memory space is allocated from the heap memory for the object. The size of the re-
served memory space depends on how much memory is needed by the data fields
belonging to the object.

• A constructor is called. The constructor usually initializes the data fields, and takes
care of other necessary initialization-related tasks. If the constructor does not ini-
tialize data fields, the fields are initialized by default with zeroes.

• The memory address of the object in the heap memory is returned and stored in an
object reference in the stack memory. (In this book we can suppose that objects are
referenced so that their addresses are stored in object references. This kind of logi-

10.2 Constructors are methods that build objects 301

cal thinking is correct from a programmer’s point of view although the actual man-
agement of objects were more complicated. In reality, depending on how the used
Java virtual machine and the automatic memory management system work, an ob-
ject reference may store an indirect address to an object.)

You may already have wondered that how it is possible that the program BankSim-
ple.java contains statements like

BankAccount first_account = new BankAccount() ;

where there is clearly a constructor call, but the class BankAccount of program Bank-
Simple.java does not have a constructor. The explanation of this inconsistency is that if
there is no constructors declared in a class, the compiler automatically generates a so-
called default constructor that can be called without supplying any parameters. The com-
piler generates these constructors in programs BankSimple.java and Rectangles.java
where the classes do not have any constructor methods. The compiler-generated default
constructors do not actually do anything. They just fulfill the requirement that here has to
be a constructor in every class. It is also important to note that the default constructors are
not generated if there is a constructor in a class. Therefore, if you try to insert the above
statement into the main() method of program BankBetter.java, it will not work. It works
only in BankSimple.java where no constructors are present.

Constructors are needed to build objects, but usually no special methods are needed
to destroy objects. When an object is created inside a method in the following way

public void some_method(...)
{
 SomeClass some_object = new SomeClass(...) ;

 ...
}

the object resides in the heap memory and some_object references (or points to) the
object. When some_method() terminates, all its local data including the object reference
some_object ceases to exist. The memory space reserved for local data is released from
the stack memory when a method terminates. Thus, when some_method() above reaches
its end, some_object simply stops referencing the object in the heap memory, and the
object becomes an unnecessary object that is not referenced any more. In such a situation,
the object does not need to exist in the heap memory. Therefore, a separate memory man-
agement mechanism called the garbage collector sees to it that the object is removed from
the heap memory and its memory space is freed for other purposes. The garbage collector
is a background program that runs automatically together with Java programs and takes
care of automatic memory management activities.

302 Chapter 10: Classes and objects

// BankBetter.java (c) 2005 Kari Laitinen

class BankAccount
{
 String account_owner ;
 long account_number ;
 double account_balance ;

 public BankAccount(String given_account_owner,
 long given_account_number,
 double initial_balance)
 {
 account_owner = given_account_owner ;
 account_number = given_account_number ;
 account_balance = initial_balance ;
 }

 public void show_account_data()
 {
 System.out.print("\n\nB A N K A C C O U N T D A T A : "
 + "\n Account owner : " + account_owner
 + "\n Account number: " + account_number
 + "\n Current balance: " + account_balance) ;
 }

 public void deposit_money(double amount_to_deposit)
 {
 System.out.print("\n\nTRANSACTION FOR ACCOUNT OF " + account_owner
 + " (Account number " + account_number + ")") ;
 System.out.print("\n Amount deposited: " + amount_to_deposit
 + "\n Old account balance: " + account_balance) ;
 account_balance = account_balance + amount_to_deposit ;
 System.out.print(" New balance: " + account_balance) ;
 }

A method that has the same name as the class itself is a
constructor method of the class. The compiler generates a
call to a constructor when an object is created. Constructors
are typeless methods. Not even the type void may be speci-
fied for them. This constructor simply copies the values of
its parameters to the fields of the class.

These two methods are the same as in program Bank-
Simple.java.

BankBetter.java - 1: A program with a BankAccount class that has a constructor.

10.2 Constructors are methods that build objects 303

 public void withdraw_money(double amount_to_withdraw)
 {
 System.out.print("\n\nTRANSACTION FOR ACCOUNT OF " + account_owner
 + " (Account number " + account_number + ")") ;

 if (account_balance < amount_to_withdraw)
 {
 System.out.print("\n -- Transaction not completed: "
 + "Not enough money to withdraw " + amount_to_withdraw) ;
 }
 else
 {
 System.out.print("\n Amount withdrawn: " + amount_to_withdraw
 + "\n Old account balance: " + account_balance) ;
 account_balance = account_balance - amount_to_withdraw ;
 System.out.print(" New balance: " + account_balance) ;
 }
 }

 public void transfer_money_to(BankAccount receiving_account,
 double amount_to_transfer)
 {
 System.out.print("\n\nTRANSACTION FOR ACCOUNT OF " + account_owner
 + " (Account number " + account_number + ")") ;

 if (account_balance >= amount_to_transfer)
 {
 receiving_account.account_balance =
 receiving_account.account_balance + amount_to_transfer ;

 System.out.print(
 "\n " + amount_to_transfer + " was transferred to "
 + receiving_account.account_owner + " (Account no. "
 + receiving_account.account_number + ")."
 + "\n Balance before transfer: " + account_balance) ;
 account_balance = account_balance - amount_to_transfer ;
 System.out.print(" New balance: " + account_balance) ;
 }
 else
 {
 System.out.print("\n -- Not enough money for transfer.") ;
 }
 }
}

BankBetter.java - 2: The other part of class BankAccount.

There must be
enough money for
the withdrawal.

This statement transfers money from "this" account to a receiving
account. receiving_account is a reference to a BankAccount
object that is given as a parameter for this method. Because this is a
method of class BankAccount, it is allowed to access the data fields
of another BankAccount object by using the syntax
 object_reference_name.data_field_name

304 Chapter 10: Classes and objects

class BankBetter
{
 public static void main(String[] not_in_use)
 {
 BankAccount jazz_player_account =
 new BankAccount("Louis Armstrong", 121212, 0) ;
 BankAccount moon_walker_account =
 new BankAccount("Neil Armstrong", 191919,
 7777.77) ;
 jazz_player_account.deposit_money(3333.33) ;

 jazz_player_account.withdraw_money(4444.44) ;

 moon_walker_account.transfer_money_to(jazz_player_account,
 2222.22) ;

 moon_walker_account.show_account_data() ;
 jazz_player_account.show_account_data() ;
 }
}

Here two BankAccount objects are cre-
ated. When the Java compiler sees these new
operations, it generates calls to the constructor
method of class BankAccount, and passes the
data given in parentheses as parameters to the
constructor method.

An object reference is given as a
parameter for method transfer_-
money_to(). Inside the method,
jazz_player_account is referenced
with reference receiving_account,
and moon_walker_account is the
"this" account, the account for which the
method was called.

BankBetter.java - 3. Method main() that creates and uses two BankAccount objects.

Exercises with program BankBetter.java

Exercise 10-1. Write a new method withdraw_all_money() to class BankAccount in program BankBet-
ter.java. The new method should take out all the money from a BankAccount object. It should
also inform the user how much money was withdrawn. The following method calls could be
written in method main() to test the new method

jazz_player_account.withdraw_all_money() ;
moon_walker_account.withdraw_all_money() ;

Exercise 10-2. Write a new method transfer_money_from() to class BankAccount in program BankBet-
ter.java. The new method should transfer money from the other account to "this" account. It
should move money in the opposite direction to the direction that the existing method
transfer_money_to() moves. The new method could be called from method main() in the
following way

jazz_player_account.transfer_money_from(

 moon_walker_account, 333.33) ;

10.2 Constructors are methods that build objects 305

BankBetter.java - X. The output of the program is always the same.

D:\javafiles3>java BankBetter

TRANSACTION FOR ACCOUNT OF Louis Armstrong (Account number 121212)
 Amount deposited: 3333.33
 Old account balance: 0.0 New balance: 3333.33

TRANSACTION FOR ACCOUNT OF Louis Armstrong (Account number 121212)
 -- Transaction not completed: Not enough money to withdraw 4444.44

TRANSACTION FOR ACCOUNT OF Neil Armstrong (Account number 191919)
 2222.22 was transferred to Louis Armstrong (Account no. 121212).
 Balance before transfer: 7777.77 New balance: 5555.550000000001

B A N K A C C O U N T D A T A :
 Account owner : Neil Armstrong
 Account number: 191919
 Current balance: 5555.550000000001

B A N K A C C O U N T D A T A :
 Account owner : Louis Armstrong
 Account number: 121212
 Current balance: 5555.549999999999

Destructors do not exist in Java

Some other programming languages (e.g. C++) have classes that contain destructors in addition to constructors.
Destructors are methods that are called when objects are destroyed. So, if you are familiar with C++, you might
expect me to explain something about destructors. Unfortunately, or luckily, there is nothing to be explained
because destructors do not belong to Java classes. As the automatic memory management system with the Garbage
Collector automatically destroys objects which are no longer referenced, there is no need to have destructors in Java
classes.

Because, in large and complicated programs, it is possible that something has to be done to objects before
they are destroyed from the heap memory, Java provides a possibility to write a method that will be called automat-
ically before an object is destroyed. The name of such a method must be finalize() and it is written like this

 public void finalize()
 {
 // Actions needed before the destruction of an object.

 }

If you put this kind of method to a class, the method will be called automatically before the Garbage Collector
destroys the object and deallocates the memory space of the object.

In the programs of this book, we are not going to use finalize() methods. If you need more information on
this topic, please take a look at program ObjectClassTests.java in the javafilesextra folder.

306 Chapter 10: Classes and objects

10.3 Several constructors in a class

The overloading of method names was a subject discussed in Chapter 9. Overloading
means that two or more methods may have the same name if their parameters differ suffi-
ciently. The Java compiler can make a distinction between two methods with the same
name if parameters have different types, or there is a different number of parameters. Let
us, for example, suppose that we have two methods with the declarators

void print_numbers(int first_number, int second_number)
void print_numbers(int some_number)

If there was the method call

print_numbers(77) ;

in some other method in the same class, the compiler would call the latter method above,
because that takes a single parameter of type int.

Overloading is very common in the case of constructor methods. Classes often need
to have several constructors because objects need to be constructed in different ways. As
the constructor method must always have the same name as the class itself, constructor
methods must be overloaded when several constructors are needed.

Program Animals.java contains a class declaration that has two constructors. The
name of the class is Animal. Animal objects are quite fictitious, bearing little similarity to
real animals. Animal objects are such that they can be fed and made to speak. When an
Animal object is fed, it takes food into its stomach in the form of a string. When an Ani-
mal object is made to speak, it tells its species’ name and what it has eaten. The data fields
of class Animal are two strings that contain the name of the animal species and maintain
information about stomach contents.

The declarators of the two constructors of class Animal are

public Animal(String given_species_name)
public Animal(Animal another_animal)

The compiler can distinguish these two methods having the same name since their param-
eters are of a different type. The first method takes a string reference as a parameter. The
latter method takes a reference to type Animal. The first constructor initializes the Ani-
mal object with the given species name. The latter method makes a new copy of the other
Animal object. It is possible to duplicate, or clone, Animal objects with the latter con-
structor. (Cloning real animals is much more difficult and dubious.)

Constructors that make copies of objects are called copy constructors. The latter con-
structor above is a copy constructor. It is very common, and sometimes even necessary,
that classes are equipped with copy constructors. The copy constructor of a class takes a
single parameter that is a reference to an object of the class itself. Thus, the copy construc-
tor inside class SomeClass would look like

class SomeClass
{
 // declarations of data fields

 public SomeClass(SomeClass object_to_be_copied)
 {
 ...
 }
 // other constructors and methods
}

10.3 Several constructors in a class 307

Another common constructor is the default constructor. Default constructors do not
require any parameters. If the hypothetical class SomeClass above were equipped with
the constructor

public SomeClass()
{
 ...
}

the class would have a default constructor. As was discussed earlier, the compiler automat-
ically generates a default constructor if no constructors are declared in a class.

Exercises with program Animals.java

Exercise 10-3. Add the new data field

String animal_name ;

to class Animal in program Animals.java. You have to modify the first constructor of the class
so that an Animal object can be created by writing

Animal named_cat = new Animal("cat", "Ludwig") ;

You also need to modify the copy constructor so that it copies the new data field. Method
make_speak() must be modified so that it prints something like

Hello, I am a cat called Ludwig.
I have eaten: ...

Exercise 10-4. Modify method make_speak() in program Animals.java so that it prints something like

Hello, I am ...
My stomach is empty.

in the case when stomach_contents references just an empty string. The stomach is empty as
long as method feed() has not been called for an Animal object. You can use the standard
string method length() to check if the stomach is empty. Method length() can be used, for
example, in the following way

if (stomach_contents.length() == 0)
{
 // stomach_contents references an empty string.
 ...

Exercise 10-5. Write a default constructor for class Animal in program Animals.java. A default constructor is
such that it can be called without giving any parameters. The default constructor should initial-
ize the data fields so that the program lines

Animal some_animal = new Animal();
some_animal.make_speak() ;

would produce the following output on the screen

Hello, I am a default animal called no name.
...

Exercise 10-6. Write a new method named make_stomach_empty() to class Animal in Animals.java. The
new method could be called

animal_object.make_stomach_empty() ;

and it should make stomach_contents reference an empty string "".

308 Chapter 10: Classes and objects

// Animals.java (c) Kari Laitinen

class Animal
{
 String species_name ;
 String stomach_contents ;

 public Animal(String given_species_name)
 {
 species_name = given_species_name ;
 stomach_contents = "" ;
 }

 public Animal(Animal another_animal)
 {
 species_name = another_animal.species_name ;
 stomach_contents = another_animal.stomach_contents ;
 }

 public void feed(String food_for_this_animal)
 {
 stomach_contents =
 stomach_contents + food_for_this_animal + ", " ;
 }

 public void make_speak()
 {
 System.out.print("\n Hello, I am a " + species_name + "."
 + "\n I have eaten: " + stomach_contents + "\n") ;
 }
}

The encapsulated data inside
objects of class Animal consist of
the name of the animal species,
and of a stomach where food is put
when an Animal object is fed.

Animal objects are fed by
concatenating (appending) the
food string to previous stom-
ach contents. Operator + joins
a new string to the end of an
existing string. stomach_-
contents references a new
String object after this oper-
ation.

Animals.java - 1: Class Animal with two constructors and two other methods.

The second constructor simply copies the fields of the
object referenced by another_animal. As another_-
animal references an Animal object, it is possible to access
the object’s data fields with the dot operator. Note that the
name of "this" object, the object for which the constructor
was called, is not visible inside methods. The names
species_name and stomach_contents automatically
refer to the data fields of "this" object.

To be accurate, this copy constructor does not make a
deep copy of the object referenced by another_animal.
After this constructor has done its job, both "this" object and
the object referenced by another_animal reference the
same String objects that represent the stomach contents
and species name. However, when "this" object is fed later
with method feed(), the feed() method makes
stomach_contents reference a new String object.

10.3 Several constructors in a class 309

class Animals
{
 public static void main(String[] not_in_use)
 {
 Animal cat_object = new Animal("cat") ;
 Animal dog_object = new Animal("vegetarian dog") ;

 cat_object.feed("fish") ;
 cat_object.feed("chicken") ;

 dog_object.feed("salad") ;
 dog_object.feed("potatoes") ;

 Animal another_cat = new Animal(cat_object) ;

 another_cat.feed("milk") ;

 cat_object.make_speak() ;
 dog_object.make_speak() ;
 another_cat.make_speak() ;
 }
}

The first constructor of class Animal is called when these
statements create objects. The compiler finds out that a string
literal is given as a parameter, and that type of parameter is
accepted by the first constructor. That constructor initializes
the stomachs of the Animal objects with an empty string.

When another_cat is made
to speak here, it is no longer an
identical copy of cat_object
because it was fed with milk after
the cloning operation.

This object creation invokes the second constructor of
class Animal. The object referenced by another_cat
becomes a shallow copy of the object referenced by cat_-
object. The copy operation is shallow because the String
objects that are referenced by the fields species_name and
stomach_contents are not duplicated.

Animals.java - 2. Class Animals whose method main() creates and uses Animal objects.

Animals.java - X. All these lines are generated through calls to method make_speak().

D:\javafiles3>java Animals

 Hello, I am a cat.
 I have eaten: fish, chicken,

 Hello, I am a vegetarian dog.
 I have eaten: salad, potatoes,

 Hello, I am a cat.
 I have eaten: fish, chicken, milk,

310 Chapter 10: Classes and objects

10.4 Arrays containing references to objects

An array is a data structure where many data items of the same type can be stored. We
have already studied arrays of the basic types char, int, double, etc. For example, we
get an array whose type is int[] when we first declare an array reference like

int[] array_of_integers ;

and then create an array with the new operator in the following way

array_of_integers = new int[50] ;

It is common to combine the array declaration and creation operations into a single state-
ment like

int[] array_of_integers = new int[50] ;

By putting a pair of empty brackets [] after the type name, we tell the compiler that we
want to declare an array.

We can also create arrays that are based on the classes that we have declared. It is
possible to declare and create arrays of type Rectangle, arrays of type BankAccount,
arrays of type Animal, and so on. These arrays can store objects. An array that is based on
a class type can be declared and created in the same way as the array above. An array ref-
erence named array_of_objects can be specified with a statement like

SomeClass[] array_of_objects ;

and the actual array is created with a statement like

array_of_objects = new SomeClass[50] ;

Also these two statements can be replaced with the single statement

SomeClass[] array_of_objects = new SomeClass[50] ;

The statement above creates an array whose type is SomeClass[], and 50 objects of
type SomeClass can be referenced by the array elements. What is important to under-
stand is that the above array creation operation does not create any objects of type Some-
Class. Right after its creation, the array above is a data structure that does not contain any
references to objects. In the Java terminology, we say that such an array contain null ref-
erences. null in a reserved keyword that means "no object referenced". At the machine
level, when a program is executing, the array elements that contain a null are set to zero,
but at the source program level, we speak about null.

To make the above hypothetical array reference objects, one possibility is to create
an object for each array element in the following way

array_of_objects[0] = new SomeClass() ;
array_of_objects[1] = new SomeClass() ;
array_of_objects[2] = new SomeClass() ;
array_of_objects[3] = new SomeClass() ;
...

As you can see, arrays that contain references to objects can be indexed in the same way as
arrays of the basic types. The index value for the first array element is zero, and the largest
possible index value is the length of the array minus one.

Program Olympics.java is an example that uses an array that contains references to
Olympics objects. The name of the array reference is olympics_table. This name was
chosen because these kinds of arrays resemble tables that we can find in books and maga-
zines. If olympics_table were a table in a book, it could begin in the following way

10.4 Arrays containing references to objects 311

The names of the columns in the above book-style table are the same as the field names in
class Olympics, and each row corresponds to an Olympics object in the array referenced
by olympics_table. When you work with arrays like the one in Olympics.java, it may
be helpful to imagine a book-style table in your mind.

Figure 10-3 shows how the array referenced by olympics_table looks like in the
main memory of a computer. Because two fields of class Olympics, olympic_city and
olympic_country, are string references, each Olympics object references two String
objects. Each Olympics object, in turn, is referenced by an array element in the array that
is referenced by olympics_table.

A method of a class can be called (invoked) for an object referenced by an array ele-
ment with the call syntax

array_of_objects[index expression].method_name(...) ;

The dot operator . can thus be used also in the case of array references. The value of the
index expression determines which array element is selected. An array that contains refer-
ences to objects can be indexed in the same way as the arrays we have studied before. To
clarify the indexing mechanism, let’s study some examples supposing that we have the
olympics_table of program Olympics.java available:

• The method call

olympics_table[5].print_olympics_data() ;

would print the data of year 1912 Olympics in Stockholm, Sweden.

• The method call

olympics_table[2].get_year()

would return value 1904.

• The if construct

if (olympics_table[olympics_index + 1].get_year() == 9999)
{
 ...

would test if the olympic_year of the object referenced by the next array position
is 9999.

• If the value of olympics_index is 9, the method call

olympics_table[olympics_index - 1].print_olympics_data() ;

would print the data of year 1928 Olympics in Amsterdam, The Netherlands.

• The method call

olympics_table[31].get_year()

would generate a NullPointerException because there is a null in the 32th
position in olympics_table. The null means that no object is referenced from
that array position.

Olympic year Olympic city Olympic country

 1896
 1900
 1904
 ...

 Athens
 Paris
 St. Louis
 ...

 Greece
 France
 United States
 ...

312 Chapter 10: Classes and objects

When an array is used in a program, the array is usually filled starting from the
beginning of the array. Then, while processing the data in an array, it is usually necessary
to test if the end of meaningful data of an array has been encountered. In program Olym-
pics.java, the end of meaningful data is marked with a special Olympics object whose
olympic_year is 9999. The array referenced by olympics_table has thus the follow-
ing structure

• The array positions with indexes from 0 to 27 contain references to "real" Olym-
pics objects.

• The array position with index value 28 references a "surreal" Olympics object
whose purpose is to mark the end of the data.

• The array positions with indexes from 29 to 39 contain null values (zeroes) which
were automatically written to these positions when the array was created. Because
no objects were created for these positions, the null values remained. Also the
other array positions were originally set to null, but these null values were over-
written when the Olympics objects were created.

Marking the end of meaningful data with special values is one possible way to make
an array store data. Programs Convert.java and Planets.java, which you can find after
Olympics.java, are examples that demonstrate two other ways for marking the end of
meaningful data. In program Convert.java, the array referenced by conversion_table
is such that it does not contain any null references. The array in Convert.java is thus full
of meaningful data, and the meaningful data ends when the array ends. The end of the
array in Convert.java is detected by using the data field length that belongs to every
array in Java. The array in Planets.java is like the array of Olympics.java in that both
arrays contain null references in those positions that come after the meaningful data. In
Planets.java, the end of meaningful data is detected when the first null value is encoun-
tered in the array.

Arrays in Java are such that their length, the value stored by the length field, cannot
be altered. The length of an array is the number of array elements. The array length is
fixed when an array is created. For example, the statement

SomeClass[] array_name = new SomeClass[some_integer] ;

creates an array whose length is the same as the value of variable some_integer at the
moment when the array is created. If the value of some_integer is increased later, the
length of the array referenced by array_name does not change. If the length of an array
must be increased in a program, one possible way to solve the problem is to create a new
longer array, copy all elements from the old array to the new array, and finally make the
original array name reference the new array.

Exercises related arrays containing object references

Exercise 10-7. Modify program Olympics.java so that you remove the "surreal" Olympics object whose
olympic_year is 9999 from the array referenced by olympics_table. The end of olympics
data in the modified program should be detected in the same way as in program Planets.java,
i.e., the first null reference in the array marks the end of meaningful data.

Exercise 10-8. By using program Olympics.java as an example, write a program that gives information about
your favorite sports. For example, if you are interested in football, soccer, basketball, or ice-
hockey, you can write a program that can inform which team was the champion in a given year.
If your interest is car racing, you can write a program that knows which driver and which team
were the champions in a given year.

10.4 Arrays containing references to objects 313

/* Olympics.java Copyright (c) Kari Laitinen

 This program demonstrates the use of an array of
 objects, or, more precisely, an array that contains
 references to objects. The program first introduces
 a class named Olympics. An Olympics object can contain
 the data of olympic games. By using the class Olympics,
 an array named olympics_table is defined inside
 the main() method of class named OlympicsDataFinder.
 olympics_table is used to search data of olympic games.
*/

import java.util.* ;

class Olympics
{
 int olympic_year ;
 String olympic_city ;
 String olympic_country ;

 public Olympics(int given_olympic_year,
 String given_olympic_city,
 String given_olympic_country)
 {
 olympic_year = given_olympic_year ;
 olympic_city = given_olympic_city ;
 olympic_country = given_olympic_country ;
 }

 public int get_year()
 {
 return olympic_year ;
 }

 public void print_olympics_data()
 {
 System.out.print("\n In " + olympic_year +
 ", Olympic Games were held in " + olympic_city +
 ", " + olympic_country + ".\n") ;
 }
}

Olympics.java - 1: The declaration of class Olympics.

get_year() is a so-called
accessor method with which it
is possible to read one field of
an object.

We have learned that the double slash // is a mechanism for writing com-
ments in Java programs. The pairs of characters /* and */ provide another possi-
bility to write comments. The character pair /* marks the beginning of a
comment. When the Java compiler sees the character pair /*, it discards all sub-
sequent characters until it encounters the character pair */ which marks the end
of the comment. The character pairs /* and */ are useful when we want to write
long comments which occupy several lines of text.

The constructor of class
Olympics copies its parameters
to the corresponding fields of
the class.

314 Chapter 10: Classes and objects

class OlympicsDataFinder
{
 public static void main(String[] not_in_use)
 {
 Olympics[] olympics_table = new Olympics[40] ;

 olympics_table[0] = new Olympics(1896, "Athens", "Greece") ;
 olympics_table[1] = new Olympics(1900, "Paris", "France") ;
 olympics_table[2] = new Olympics(1904, "St. Louis", "U.S.A.");
 olympics_table[3] = new Olympics(1906, "Athens", "Greece") ;
 olympics_table[4] = new Olympics(1908, "London", "Great Britain");
 olympics_table[5] = new Olympics(1912, "Stockholm","Sweden") ;
 olympics_table[6] = new Olympics(1920, "Antwerp", "Belgium") ;
 olympics_table[7] = new Olympics(1924, "Paris", "France") ;
 olympics_table[8] = new Olympics(1928, "Amsterdam","Netherlands");
 olympics_table[9] = new Olympics(1932, "Los Angeles", "U.S.A.");
 olympics_table[10] = new Olympics(1936, "Berlin", "Germany") ;
 olympics_table[11] = new Olympics(1948, "London", "Great Britain");
 olympics_table[12] = new Olympics(1952, "Helsinki","Finland") ;
 olympics_table[13] = new Olympics(1956, "Melbourne","Australia") ;
 olympics_table[14] = new Olympics(1960, "Rome", "Italy") ;
 olympics_table[15] = new Olympics(1964, "Tokyo", "Japan") ;
 olympics_table[16] = new Olympics(1968, "Mexico City","Mexico") ;
 olympics_table[17] = new Olympics(1972, "Munich", "West Germany");
 olympics_table[18] = new Olympics(1976, "Montreal", "Canada") ;
 olympics_table[19] = new Olympics(1980, "Moscow", "Soviet Union");
 olympics_table[20] = new Olympics(1984, "Los Angeles","U.S.A.");
 olympics_table[21] = new Olympics(1988, "Seoul", "South Korea");
 olympics_table[22] = new Olympics(1992, "Barcelona","Spain") ;
 olympics_table[23] = new Olympics(1996, "Atlanta", "U.S.A.");
 olympics_table[24] = new Olympics(2000, "Sydney", "Australia") ;
 olympics_table[25] = new Olympics(2004, "Athens", "Greece") ;
 olympics_table[26] = new Olympics(2008, "Beijing", "China") ;
 olympics_table[27] = new Olympics(2012, "London", "Great Britain");
 olympics_table[28] = new Olympics(9999, "end of", "data") ;

This and the rest of the state-
ments on this page create 29
Olympics objects, and the refer-
ences to the created objects are
stored into the olympics_table
positions with indexes from 0 to
28.

Olympics.java - 2: olympics_table at the beginning of method main().

This Olympics object is used to mark the end
of real olympics data.

This statement both declares and creates an array that
contains 40 references to Olympics objects. Immediately
after the execution of this statement, the 40 references
contain a null which means that they do not yet reference
an object. This statement means the same as the two sepa-
rate statements
 Olympics[] olympics_table ;
 olympics_table = new Olympics[40] ;

10.4 Arrays containing references to objects 315

 System.out.print("\n This program can tell where the Olympic "
 + "\n Games were held in a given year. Give "
 + "\n a year by using four digits: ") ;

 Scanner keyboard = new Scanner(System.in) ;
 int given_year = keyboard.nextInt() ;

 int olympics_index = 0 ;

 boolean table_search_ready = false ;

 while (table_search_ready == false)
 {
 if (olympics_table[olympics_index].get_year() == given_year)
 {
 olympics_table[olympics_index].print_olympics_data() ;

 table_search_ready = true ;
 }
 else if (olympics_table[olympics_index].get_year() == 9999)
 {
 System.out.print("\n Sorry, no Olympic Games were held in "
 + given_year + ".\n") ;

 table_search_ready = true ;
 }
 else
 {
 olympics_index ++ ;
 }
 }
 }
}

Method get_year() is used to read the field
olympic_year from the Olympics object whose refer-
ence is in the "current position" in the array referenced by
olympics_table. The "current position" is determined
by the value of olympics_index. The value returned by
the get_year() method is compared to the value stored in
the variable given_year.

This variable of type
boolean is used to control
the correct termination of
the while loop.

Olympics.java - 3. The last part of method main() that performs a search in olympics_table.

Olympics.java - X. Here the search for olympics data was successful.

D:\javafiles3>java OlympicsDataFinder

 This program can tell where the Olympic
 Games were held in a given year. Give
 a year by using four digits: 1976

 In 1976, Olympic Games were held in Montreal, Canada.

316 Chapter 10: Classes and objects

Initializing data fields with initializers

Constructors are the usual means to build objects and initialize their data fields. Another possibility to initialize
fields is to assign initial values when the fields are introduced in a class declaration. It is thus possible to declare a
class in the following way

class SomeClass
{
 int some_integer_field = 9 ;
 double some_number = 33.44 ;
 String some_string_field = "initial text" ;
 int[] some_integer_array = { 66, 77, 88 } ;
 ...

The initial values that are given to the fields of a class this way are called initializers. The values that the fields
receive through initializers take effect before the constructors are executed. The fields are initialized in the order in
which they are written in the class declaration.

Initializers are useful when a class has several constructors, and certain fields must be given certain initial
values in every constructor. In such a situation the constructors are simplified if initial values are given by using ini-
tializers.

The order of class members in a class declaration

Class members include data fields, constants, constructors, and methods. Constants are immutable data fields
declared with the final keyword. The classes in the example programs of this book are written so that different
kinds of class members are introduced in a certain order. The order is such that data fields are introduced before
constructors and methods. The classes of this book thus have the structure

class ClassName
{

 declarations of data fields and constants

 constructors

 accessor methods

 other methods
}

The Java compiler does not, however, require that class members are introduced in the above order. It is pos-
sible, for example, to declare a class so that data fields are introduced at the end of the class declaration. The class
Animal of program Animals.java could thus alternatively be written in the following way

class Animal
{
 public void feed(String food_for_this_animal)
 { ...

 public void make_speak()
 { ...

 public Animal(String given_species_name)
 { ...

 public Animal(Animal another_animal)
 { ...

 String species_name ;
 String stomach_contents ;
}

Although the Java compiler does not set any strict rules for the order of class members in a class declaration,
it is a good programming practice to always use a certain order of class members. The order of class members that
is used in this book can be considered a logical order because the same order is used in UML class diagrams. (UML
diagrams will be discussed in the following chapter.)

10.4 Arrays containing references to objects 317

Figure 10-3. The objects of program Olympics.java in the main memory.

Four bytes of stack memory are reserved for
olympics_table which is a reference to an
array of type Olympics[]. The stored address
C94420H is the address of the array in the heap
memory. (Note again that, although the hexadec-
imal addresses are used somewhat realistically
in this drawing, your computer is not likely to
use these numerical addresses.)

These are the two String objects referenced
by the first Olympics object. These String
objects are supplied as parameters for the
Olympics constructor, and we can thus sup-
pose that they are created before the Olympics
object. Therefore, they are placed before the
Olympics object into the heap memory.

"A
th
en
s"

C944D0H
C944E0H

1896

This is the second created Olympics object. The
fields inside the object are set so that 1900 is the
value of olympic_year, olympic_city con-
tains the address of the String object that con-
tains the text "Paris", and olympic_country
contains the address of String object "France".

C94420H

 C944D0H:

 C944E0H:

 C944F0H:

C944F0H

C94528H

C94560H
C94598H
.
.
.

"G
re
ec
e"

"P
ar
is
"

C94508H

C94518H

1900

 C94508H:

 C94518H:

 C94528H:

"F
ra
nc
e"

"S
t.
 L
ou
is
" C94540H:

 C94550H:

 C94420H:

This is the created array in the heap memory.
The array has 40 array elements that can each
reference an Olympics object. In this drawing
objects are placed to the heap memory in that
order in which they are created. (Actually, an
array is also an object, but array objects are not
created in the same way as other objects.)

0

318 Chapter 10: Classes and objects

Convert.java - X. Here, the program is executed by giving input data on the command line.

D:\javafiles3>java Convert liters 20

 20.0 liters is 5.284015852047556 gallons (U.S.)
 20.0 liters is 4.399472063352397 gallons (Br.)
 20.0 liters is 42.28329809725159 pints (U.S.)
 20.0 liters is 35.21126760563381 pints (Br.)

// Convert.java

import java.util.* ;

class Conversion
{
 String first_unit ;
 String second_unit ;
 double conversion_constant ;

 public Conversion(String given_first_unit,
 String given_second_unit,
 double given_conversion_constant)
 {
 first_unit = given_first_unit ;
 second_unit = given_second_unit ;
 conversion_constant = given_conversion_constant ;
 }

 public void convert(String given_unit,
 double amount_to_convert)
 {
 if (first_unit.contains(given_unit))
 {
 System.out.print("\n " + amount_to_convert + " "
 + first_unit + " is "
 + amount_to_convert * conversion_constant
 + " " + second_unit) ;
 }

 if (second_unit.contains(given_unit))
 {
 System.out.print("\n " + amount_to_convert + " "
 + second_unit + " is "
 + amount_to_convert / conversion_constant
 + " " + first_unit) ;
 }
 }
}

Convert.java - 1+: A program to make conversions between units of measure.

The plus sign means that part of the shown program is explained in more detail later.
In this case, method convert() is explained in a more explicit program description.

Objects of class Conversion will be stored in an
array in this program, which is a small intelligent sys-
tem that can be asked to make conversions between
various units of measure. For example, if the user of
this program wants to know how much is 20 miles in
kilometers, he or she can simply type the following on
the command line
 java Convert miles 20

10.4 Arrays containing references to objects 319

class Convert
{
 public static void main(String[] command_line_parameters)
 {
 Scanner keyboard = new Scanner(System.in) ;

 Conversion[] conversion_table = new Conversion[13] ;

 conversion_table[0] = new Conversion("meters", "yards", 1.093613);
 conversion_table[1] = new Conversion("meters", "feet", 3.280840);
 conversion_table[2] = new Conversion("miles", "kilometers",1.609344);
 conversion_table[3] = new Conversion("inches", "centimeters", 2.54);
 conversion_table[4] = new Conversion("acres", "hectares", 0.4046873);
 conversion_table[5] = new Conversion("pounds", "kilograms",0.4535924);
 conversion_table[6] = new Conversion("ounces", "grams", 28.35);
 conversion_table[7] = new Conversion("gallons (U.S.)","liters", 3.785);
 conversion_table[8] = new Conversion("gallons (Br.)", "liters", 4.546);
 conversion_table[9] = new Conversion("pints (U.S.)", "liters", 0.473);
 conversion_table[10]= new Conversion("pints (Br.)", "liters", 0.568);
 conversion_table[11]= new Conversion("joules", "calories",4.187);
 conversion_table[12]= new Conversion("lightyears", "kilometers",
 9.461e12) ;
 String unit_from_user ;
 int amount_to_convert ;

 if (command_line_parameters.length == 2)
 {
 unit_from_user = command_line_parameters[0] ;
 amount_to_convert = Integer.parseInt(
 command_line_parameters[1]) ;
 }
 else
 {
 System.out.print("\n Give the unit to convert from: ") ;
 unit_from_user = keyboard.nextLine() ;
 System.out.print(" Give the amount to convert: ") ;
 amount_to_convert = Integer.parseInt(keyboard.nextLine()) ;
 }

 for (int conversion_index = 0 ;
 conversion_index < conversion_table.length ;
 conversion_index ++)
 {
 conversion_table[conversion_index].convert(unit_from_user,
 amount_to_convert) ;
 }
 }
}

Convert.java - 2. The second part of the program.

conversion_table references an array that contains references to Conver-
sion objects. Each Conversion object contains the names of two units of mea-
sure, and a constant that tells how these two units relate to each other. The data
with which the objects are initialized can be found in Physics books and alma-
nacs. This line, for example, says that one mile is 1.609344 kilometers.

320 Chapter 10: Classes and objects

 public void convert(String given_unit,
 double amount_to_convert)
 {
 if (first_unit.contains(given_unit))
 {
 System.out.print("\n " + amount_to_convert + " "
 + first_unit + " is "
 + amount_to_convert * conversion_constant
 + " " + second_unit) ;
 }

 if (second_unit.contains(given_unit))
 {
 System.out.print("\n " + amount_to_convert + " "
 + second_unit + " is "
 + amount_to_convert / conversion_constant
 + " " + first_unit) ;
 }
 }
}

Convert.java - 1 - 1. Method convert() of class Conversion.

Method contains() returns the value true when the unit name stored by this
object includes the unit string given as a parameter. This method attempts conversions
from first_unit to second_unit and vice versa. Depending on which conversion is
possible, either multiplication or division operation is used in conversion.

By using the method contains() instead of a more accurate string comparison
method like compareTo(), it was possible to make this program more flexible.
Although all the unit names inside the Conversion objects are in plural form (e.g.
"pints"), the program also works when the user types in the units in singular form (e.g.
"pint").

Instead of the contains() method it would be possible to use the indexOf()
method. An alternative way to write the latter if construct would be:
 if (second_unit.indexOf(given_unit) != -1)
 {
 ...

indexOf() is a string method that returns the index of the string that is given as a
parameter. For example, if second_unit references the string "kilometers" and
given_unit references the string "meter", the above call to method indexOf()
returns 4 because the string "meter" starts in position with index 4 in the string "kilome-
ters". indexOf() returns -1 when it cannot find the given substring.

Method convert() is called from method main() for
every created Conversion object in the array referenced by
conversion_table. The method is called without caring
whether or not the given unit is represented by the Conver-
sion object in question. If the convert() method cannot
convert the given unit, it does not print anything to the screen.

