
CHAPTER 15

 MORE STANDARD JAVA TYPES

The two preceding chapters have introduced standard Java classes. This chapter continues
with the same theme. As we have now studied the basic features of Java, there are only the
huge number of standard classes and other types that are left to be learned. Fortunately,
you do not have know them all. You can study them gradually, as is necessary. I hope that
after this book has introduced some of the standard classes, you will be able to learn the
other standard classes from the electronic Java documentation and other sources.

ArrayList is a standard class that is useful in applications in which dynamic arrays are
needed. A dynamic array is such that its length (or size) is not fixed. Instead, the array
length may increase or decrease while the array is used in a program. Class ArrayList,
the first subject of this chapter, provides methods which automatically increase or decrease
the length of an array in operations that insert or remove new objects to/from an array.

Interfaces, and especially standard interfaces like Comparable, is the second subject of
this chapter. Interfaces specify methods. A class can implement an interface, which means
that the class is equipped with certain methods.

The third subject of this chapter is the standard class GregorianCalendar, the official
Java type for handling information related to dates and time. GregorianCalendar is a
subclass of a class named Calendar. You will be shown how class GregorianCalendar
can be used instead of the Date class which was introduced in Chapter 11.

These are sample pages from Kari Laitinen’s book A Natural Introduction to
Computer Programming with Java. For more information, please visit
http://www.naturalprogramming.com/javabook.html

502 Chapter 15: More standard Java types

15.1 ArrayList class

We have learned a long time ago that an array of type int[] is a data structure that can
contain a certain number of data items of type int. Similarly, an array whose type is, say,
President[] is an array that can contain a certain number of references to objects of
type President. These traditional Java arrays are created with statements like

int[] array_of_integers = new int[50] ;
President[] president_table = new President[80] ;

and individual array elements can be accessed by giving an index expression inside brack-
ets:

array_of_integers[integer_index] = 77 ;
president_table[0] = new President(...) ;

When a traditional array is created, the length of the array is specified by the value that is
given in brackets. The length of an array, which can be read from the array field length,
is the number of array elements. For example, the above array_of_integers has 50
array elements to store values of type int, and its length is thus 50.

A shortcoming of a traditional array is that its length cannot be changed after the
array has been created. A traditional array is efficient, which means that not much comput-
ing time is required to read and write the array elements, but in some programs the fixed
length of an array causes problems, or at least makes programming difficult. For this rea-
son, Java provides a standard array class named ArrayList. ArrayList-based arrays
are less efficient than the traditional Java arrays, but in some programs they are very use-
ful. The most important feature of ArrayList-based arrays is that they can grow dynam-
ically, i.e., the memory space of an array is increased automatically if necessary.

ArrayList arrays can store only (references to) objects. When you create an
ArrayList array, you should specify what kinds of objects you intend to store with the
array. An ArrayList-based array can be created with a statement like

ArrayList<Integer> array_of_integers =
 new ArrayList<Integer>() ;

By writing <Integer> after the class name you can specify that the array will store
objects of type Integer. There is no need to specify a length or a capacity for the array
because the array can grow automatically when necessary. ArrayList is a so-called
generic class whose characteristics can be fine-tuned at the moment when an object of the
class is created. By writing a class name inside angle brackets, < >, after the name
ArrayList, we can stipulate what kinds of objects the array will store. The class name
inside the angle brackets is a type parameter for the generic class. In general, an Array-
List array like

ArrayList<SomeClass> some_array =
 new ArrayList<SomeClass>() ;

can store objects of SomeClass or objects of some subclass of SomeClass.
The simplest way to add elements to an ArrayList-based array is to use the method

add() which can add a new element to the end of an array. For example, the statements

array_of_integers.add(123) ;
array_of_integers.add(456) ;
array_of_integers.add(789) ;

would add three elements of type int to the array of type ArrayList<Integer> that is
created above. When these statements are executed right after the creation of the array, the
number of array elements becomes 3. The integer values that are added to the array by the
above statements are values, not objects. Therefore, automatic boxing operations happen
when the above statements are executed. In a boxing operation, a value type is automati-

15.1 ArrayList class 503

cally converted to an object. The above int values are converted to Integer objects. As
a result of the execution of the above statements, the first three positions in the array refer-
ence "boxes" that contain the integer values.

An ArrayList array has a specific capacity in regard to the amount of elements it
can hold. This capacity is consumed gradually when new array elements are added to the
array. When the capacity to add new elements has been exhausted, it is enlarged automati-
cally. The capacity of an array is enlarged so that a new and larger memory area is allo-
cated for the array, the old array elements are copied to the new memory area, and the new
memory area becomes the official internal memory area of the array.

Traditional arrays have the length field which can be read when we want to know
how many elements the array contains. Because ArrayList arrays have, at least in the-
ory, an unlimited capacity to store data, ArrayList arrays do not have the length field.
Instead, the ArrayList class provides the size() method which returns a value that tells
how many elements an array currently contains.

ArrayList-based arrays cannot be indexed with index expressions inside square
brackets. To access individual array elements, the ArrayList class provides methods
named get() and set(). With these methods an element in certain index position can be
read or written.

We get a particularly interesting ArrayList-based array with the statement

ArrayList<Object> miscellaneous_objects =
 new ArrayList<Object>() ;

This statement creates an array that can store objects of the standard class Object and
objects of all subclasses of the Object class. Because Object is the superclass of all Java
classes, the array created by the above statement can store all kinds of objects. All the fol-
lowing statements would thus be acceptable:

miscellaneous_objects.add(555) ;
miscellaneous_objects.add(66.77) ;
miscellaneous_objects.add("This is a string literal.") ;
miscellaneous_objects.add(new Date("03.02.2004")) ;

These statements add objects of types Integer, Double, String, and Date to the same
array, and each element of the array points to a different type of object.

It is easy to add different kinds of objects to the above array, but when we want to do
something with the objects, the situation can be somewhat more complicated. For exam-
ple, if we want to take a substring that contains the first three characters of the String
object that is the third one added to the above array, we might first write

miscellaneous_objects.get(2).substring(0, 3)

The compiler would not, however, accept this because the method call get(2) returns a
reference to type Object, and class Object does not have a method named sub-
string(). In order to make the above method call acceptable to the compiler, we would
have to convert the array element to type String in the following way

((String) miscellaneous_objects.get(2)).substring(0, 3)

Things must not, fortunately, always be this difficult. For example, all the objects
that are stored by the above array could be printed with the loop

for (int object_index = 0 ;
 object_index < miscellaneous_objects.size() ;
 object_index ++)
{
 System.out.print("\n "
 + miscellaneous_objects.get(object_index)) ;
}

504 Chapter 15: More standard Java types

In the case of the above loop, there are no problems with compilation because for all
objects there is a method named toString(), and that method will be called automati-
cally when the string concatenation operator (+) is applied to an object in the array. Inside
the above loop, miscellaneous_objects.get(object_index) returns an element
of an ArrayList-based array, and that element is an object reference of type Object.
When the string concatenation operator (+) is used to concatenate something to "\n", the
toString() method is invoked for the referenced object. As toString() is a polymor-
phic method that is declared in class Object and redefined in its subclasses, the method is
executed so that first the type of the referenced object is checked, and then the
toString() method of the class of the referenced object is invoked.

On the following pages you can find example programs ArrayListDemo.java, Mor-
seCodes.java, and Translate.java that demonstrate the use of ArrayList-based arrays
and ArrayList methods. Program Findreplace.java in the previous chapter also uses
class ArrayList. In the following section there is a program named Events.java, but
because that program introduces a new concept called interface, it is presented in a new
section. Briefly described, the following are the most important ArrayList methods:

• To add elements to an ArrayList array you can use methods add() and add-
All(). When these methods are called, the number of elements in the ArrayList
array is increased. The more powerful of these methods is addAll() because with
that method you can insert all the elements of another ArrayList array or some
other collection to any position of an ArrayList array. The operation of method
addAll() is described in Figure 15-1. Method add() can insert only a single ele-
ment to a specified position of an ArrayList array. There are two versions of both
methods. One that adds elements only to the end of an array, and one that is capa-
ble of inserting elements in the middle of an array.

• To remove or delete elements from an ArrayList array, you can use methods re-
move() and clear(). When these methods are called, the number of array ele-
ments is reduced. There are two versions of method remove(). One version
removes the first occurrence of a certain object, while the other removes the ele-
ment of a certain array position. Method clear() removes all elements from an
ArrayList array.

• To make copies of an ArrayList array, you can use methods clone() and toAr-
ray(). Method clone() creates a shallow copy of an ArrayList array. Method
toArray() converts the whole ArrayList array to a conventional array.

• To search for a certain element from an ArrayList array, you can use methods
indexOf(), lastIndexOf(), and contains(). Method indexOf() can search
for an object in an ArrayList array and return its index. The value -1 is returned
if the object is not found. Method lastIndexOf() works like indexOf() but it
starts the search from the last position of an array and proceeds towards the begin-
ning of the array. Method contains() is a boolean method that can be used to
check whether a certain object is in an ArrayList array. Method contains() re-
turns false in the same situation when method indexOf() returns -1.

By using the electronic Java documentation you can find more accurate information
about the methods of class ArrayList. It is normal that sometimes it is hard to under-
stand how a method of a class works. In such a situation, one possibility is to write a test
program in which the method is used. You could, for example, use ArrayListDemo.java
as a test program by adding new method calls to it.

In addition to the actual ArrayList methods, you can use the static methods of
class Collections when you work with ArrayList arrays. Some of the Collections
methods are used in the programs of this section. In the javafilesextra folder, there is the
program CollectionsMethods.java which demonstrates some of the Collections meth-
ods.

15.1 ArrayList class 505

Figure 15-1. Performing an addAll() operation with ArrayList arrays.

addAll()

operation

 A

 B

 C

 D

 E

 F

 G

 H

 I

 J

In
 th

is
 d

ra
w

in
g

w
e

su
pp

os
e

th
at

 th
is

 a
rr

ay
 is

 r
ef

er
-

en
ce

d
by

a
r
r
a
y
_
t
o
_
m
o
d
i
f
y,

 a
nd

 th
e

op
er

at
io

n

a
r
r
a
y
_
t
o
_
m
o
d
i
f
y
.
a
d
d
A
l
l
(

7
,

a
r
r
a
y
_
t
o
_
i
n
s
e
r
t

)

;

is
 p

er
fo

rm
ed

 f
or

 th
is

 a
rr

ay
.

 w

 x

 y

 z

 A

 B

 C

 D

 E

 F

 G

 H

 I

 J

 w

 x

 y

 z

 w

 x

 y

 z

T
hi

s
is

 th
e

ar
ra

y
re

fe
re

nc
ed

 b
y

a
r
r
a
y
_
t
o
_
i
n
s
e
r
t

. T
hi

s
ar

ra
y

is

in
se

rt
ed

 in
to

 th
e

po
si

tio
n

w
ith

 in
de

x
7

in
 th

e
ot

he
r

ar
ra

y.
All the array elements of
the array referenced by
array_to_insert are
copied to these positions
in the destination array.

These elements of the
array referenced by
array_to_modify are
moved to positions with
larger indexes.

"Old-fashioned" ArrayList arrays

In older Java versions the ArrayList class was not a generic class. This means that ArrayList-based arrays were
declared without specifying the type of the objects that were intended to be stored to the array. To be compatible
with older Java versions, the latest Java versions still accept ArrayList arrays that are created without a type
parameter. For example, the array referenced by miscellaneous_objects, that is discussed in this section, can
be declared and created with the statement

ArrayList miscellaneous_objects = new ArrayList() ;

This array works in the same way as an array that is created with the statement

ArrayList<Object> miscellaneous_objects = new ArrayList<Object>() ;

but an ArrayList array that is declared without a type parameter is less reliable in some situations, and, therefore,
such arrays should not be used. Also the compiler prints warning messages when such arrays are declared.

506 Chapter 15: More standard Java types

ArrayListDemo.java - X. Experiments with ArrayList-based arrays.

D:\javafiles3>java ArrayListDemo

 Value 404 has index: 3

 202 101 505 404

 202 101 888 999 505 404

 202 101 888 999 404

 202 101 999 404

 777 666

 202 101 999 404 777 666

 202 101 999 411 777 666

One version of the addAll()
method adds the elements of
another array to the end of an
ArrayList array. Here it has
added the 2 elements from the
array referenced by
another_array.

Here, method remove() has
removed the array element in posi-
tion with index 4. Another version
of remove() has been called to
remove value 888 from the array.

// ArrayListDemo.java

import java.util.* ;

class ArrayListDemo
{
 static void print_array(ArrayList<Integer> given_array)
 {
 System.out.print("\n\n ") ;

 for (int element_index = 0 ;
 element_index < given_array.size() ;
 element_index ++)
 {
 System.out.printf("%5s", given_array.get(element_index)) ;
 }
 }

Method print_array() prints the array versions that are
created in method main(). When the array elements are printed
with the format specifier %5s, they appear right-justified on the
screen. The s in the format specifier refers to the word "string".
When the elements are printed as strings, the toString()
method is automatically invoked for the objects.

ArrayListDemo.java - 1: Demonstrating the standard class ArrayList.

An element of an
ArrayList array can be
read with the get()
method which takes an
index as a parameter.

The size() method knows how
many elements an ArrayList array
currently contains.

15.1 ArrayList class 507

 public static void main(String[] not_in_use)
 {
 ArrayList<Integer> array_of_integers = new ArrayList<Integer>() ;

 array_of_integers.add(202) ;
 array_of_integers.add(101) ;
 array_of_integers.add(505) ;
 array_of_integers.add(404) ;

 System.out.print("\n Value 404 has index: "
 + array_of_integers.indexOf(404)) ;
 print_array(array_of_integers) ;

 array_of_integers.add(2, 999) ;
 array_of_integers.add(2, 888) ;
 print_array(array_of_integers) ;

 array_of_integers.remove(4) ;
 print_array(array_of_integers) ;

 array_of_integers.remove(new Integer(888)) ;
 print_array(array_of_integers) ;

 ArrayList<Integer> another_array = new ArrayList<Integer>() ;
 another_array.add(777) ;
 another_array.add(666) ;
 print_array(another_array) ;

 array_of_integers.addAll(another_array) ;
 print_array(array_of_integers) ;

 array_of_integers.set(3, array_of_integers.get(3) + 7) ;
 print_array(array_of_integers) ;
 }
}

ArrayListDemo.java - 2. Using the methods of class ArrayList to modify arrays.

Here, the standard class ArrayList is used to cre-
ate an array. As the type parameter is <Integer>, the
array will store Integer objects. It is not necessary to
specify any length or size for the array. Initially, this
array does not contain any elements, but the array
grows automatically when objects are added to it.

Another version of the add()
method is used to insert new array
elements to the array position with
index 2. As a result of the insertion
operation, the elements in posi-
tions with indexes 2, 3, 4, ... are
moved to positions with indexes 3,
4, 5, ..., respectively.

With method get() it is possible to read
an array element in certain array position,
and the set() method writes a new value to
a specified array position. As the index val-
ues start from zero, 3 refers to the fourth
array element. This statement thus adds 7 to
the fourth element.

Method add() pushes an object
to the end of the array. An add()
operation increases the number of
array elements by one. The int val-
ues that are given to the add()
method are automatically boxed
inside Integer objects.

508 Chapter 15: More standard Java types

Iterators

Many standard classes in the Java class library provide the possibility to use so-called iterators. For example, class
ArrayList has inherited a method named iterator() that returns an iterator that can be used to read the objects
that are stored by an ArrayList-based array. The returned iterator implements the standard interface Iterator.
Iterators can be used instead of index variables when ArrayList objects are processed. For example, the loop
inside method print_array() of program ArrayListDemo.java could be rewritten by using an iterator in the fol-
lowing way:

Iterator element_to_print = given_array.iterator() ;

while (element_to_print.hasNext() == true)
{
 System.out.printf("%5s", element_to_print.next()) ;
}

An iterator is a kind of pointer or a special reference to the objects of an array. In the above loop, the iterator
element_to_print points to the objects of an ArrayList-based array. You can think that after the creation of the
iterator, it points to a position that is one position behind the first object in the array. When the Iterator method
next() is called, the iterator is advanced to the next object in the array, and a reference to the object is returned.
The first call to next() makes the iterator point to the first object of the array. With the Iterator method has-
Next() it is possible to check whether the array has more elements, i.e., whether a call to the next() method will
be successful.

By comparing the above loop to the corresponding loop in program ArrayListDemo.java, you can see that
using an iterator can simplify loops, or at least make a loop shorter. Instead of iterators, however, it is better to use
"foreach" loops which are shorter than traditional loops. The above program lines can be replaced, for example,
with the following "foreach" loop:

for (Object element_in_array : given_array)
{
 System.out.printf("%5s", element_in_array) ;
}

MorseCodes.java - X. The string "Kari Laitinen" written with Morse codes.

D:\javafiles3>java MorseCodes

 Type in your name: Kari Laitinen

 Your name in Morse codes is:

 -.- .- .-. .. .-.. .- .. - .. -. . -.

Invented by Samuel Morse in the U.S. in 1844, Morse codes were the first widely-used method
for transmitting textual information. Each letter of the alphabet is coded with a sequence of sig-
nals. A signal can be either short or long. If two communicating parties know the Morse codes,
they can communicate, for example, with a flashlight. To transmit letter L, for example, you first
show the light for a short time, then once for a longer time, and finally you show it twice for a
shorter time. Before telephones and computers became popular, Morse codes were widely used
to send textual messages through electric lines and radio waves. Although these codes have less
importance these days, they remain an important invention in the history of information process-
ing. (The "code" for the space character is my invention in this program.)

15.1 ArrayList class 509

// MorseCodes.java

import java.util.* ;

class MorseCodes
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 String[] array_of_morse_codes =

 { "A", ".-", "B", "-...", "C", "-.-.", "D", "-..", "E", ".",
 "F", "..-.", "G", " --.", "H", "....", "I", "..", "J", ".---",
 "K", "-.-", "L", ".-..", "M", "--", "N", "-.", "O", "---",
 "P", ".--.", "Q", "--.-", "R", ".-.", "S", "...", "T", "-",
 "U", "..-", "V", "...-", "W", ".--", "X", "-..-","Y", " -.--",
 "Z", "--..", "1", ".----","2", "..---","3", "...--","4","....-",
 "5", ".....","6", "-....","7", "--...","8", "---..","9","----.",
 "0", "-----"," ", " " } ;

 ArrayList<String> arraylist_of_morse_codes = new ArrayList<String>() ;

 Collections.addAll(arraylist_of_morse_codes, array_of_morse_codes) ;

 System.out.print("\n Type in your name: ") ;

 String given_name = keyboard.nextLine().toUpperCase() ;

 System.out.print("\n Your name in Morse codes is: \n\n") ;

 for (int character_index = 0 ;
 character_index < given_name.length() ;
 character_index ++)
 {
 int index_of_character_in_arraylist =
 arraylist_of_morse_codes.indexOf(
 "" + given_name.charAt(character_index)) ;

 if (index_of_character_in_arraylist != -1)
 {
 System.out.print(" " +
 arraylist_of_morse_codes.get(
 index_of_character_in_arraylist + 1)) ;
 }
 }
 }
}

 With the static method addAll() of class Collections, all ele-
ments of a conventional Java array are added to the end of an empty
ArrayList array. The array referenced by array_of_morse_codes
is an array of strings, and, after this statement has been executed, the
ArrayList array is an ArrayList version of the conventional array.
Both arrays contain characters and their Morse codes as strings. The
Morse code of a character is always in the following array position.

MorseCodes.java - 1. Using class ArrayList to store String objects.

Because the Morse code of a character always
follows the character in the array, we add one to the
index in order to get the Morse code.

510 Chapter 15: More standard Java types

// Translate.java (c) Kari Laitinen

import java.util.ArrayList ;

class BilingualTranslation
{
 protected String first_word ;
 protected String second_word ;

 public BilingualTranslation() {}

 public BilingualTranslation(String given_first_word,
 String given_second_word)
 {
 first_word = given_first_word ;
 second_word = given_second_word ;
 }

 public boolean translate(String given_word)
 {
 boolean translation_was_successful = false ;

 if (given_word.equals(first_word))
 {
 System.out.print("\n \"" + given_word + "\" translates to \""
 + second_word + "\"") ;

 translation_was_successful = true ;
 }

 if (given_word.equals(second_word))
 {
 System.out.print("\n \"" + given_word + "\" translates to \""
 + first_word + "\"") ;

 translation_was_successful = true ;
 }

 return translation_was_successful ;
 }
}

This program can make translations between words of two or
three natural languages. BilingualTranslation is a class that is
used to translate words between two natural languages like English
and Spanish. Objects of class BilingualTranslation contain a
pair of words which translate to each other.

Method translate() is a polymorphic method of which
there exist several versions in this class hierarchy. In the
derived class TrilingualTranslation there is a different
version of this method.

Translate.java - 1: The declaration of class BilingualTranslation.

This method returns true if
it can translate the given word.
Translation is possible if the
given word is the same as some
of the words inside the object
itself. A line of text is printed
only if translation is possible.

Here, there must be a default
constructor (i.e. a constructor
which can be called without giv-
ing any parameters) because
another class is derived from this
class. The default constructor of
this class is executed before the
constructor of the derived class.

15.1 ArrayList class 511

class TrilingualTranslation extends BilingualTranslation
{
 protected String third_word ;

 public TrilingualTranslation(String given_first_word,
 String given_second_word,
 String given_third_word)
 {
 first_word = given_first_word ;
 second_word = given_second_word ;
 third_word = given_third_word ;
 }

 public boolean translate(String given_word)
 {
 boolean translation_was_successful = false ;

 if (given_word.equals(first_word))
 {
 System.out.print("\n \"" + given_word + "\" translates to \""
 + second_word + "\" and \"" + third_word + "\"") ;

 translation_was_successful = true ;
 }

 if (given_word.equals(second_word))
 {
 System.out.print("\n \"" + given_word + "\" translates to \""
 + first_word + "\" and \"" + third_word + "\"") ;

 translation_was_successful = true ;
 }

 if (given_word.equals(third_word))
 {
 System.out.print("\n \"" + given_word + "\" translates to \""
 + first_word + "\" and \"" + second_word + "\"") ;

 translation_was_successful = true ;
 }

 return translation_was_successful ;
 }
}

Being an enhanced version of its superclass, class TrilingualTranslation works
with three natural words. The words are supplied to the constructor when a translation object
is created.

Translate.java - 2: Class TrilingualTranslation and its version of method translate().

Because this method works with three natural languages, it
prints longer lines of text than the corresponding method in class
BilingualTranslation. Note that if you want to include double
quote characters inside a string literal, you must use a backslash \
before the double quote character.

512 Chapter 15: More standard Java types

class Translate
{
 public static void main(String[] command_line_parameters)
 {
 ArrayList<BilingualTranslation> array_of_translations =
 new ArrayList<BilingualTranslation>() ;

 array_of_translations.add(
 new BilingualTranslation("week", "semana")) ;
 array_of_translations.add(
 new TrilingualTranslation("street", "calle", "rue")) ;
 array_of_translations.add(
 new BilingualTranslation("eat", "comer")) ;
 array_of_translations.add(
 new TrilingualTranslation("woman", "mujer", "femme")) ;
 array_of_translations.add(
 new TrilingualTranslation("man", "hombre", "homme")) ;
 array_of_translations.add(
 new BilingualTranslation("sleep", "dormir")) ;

 if (command_line_parameters.length == 1)
 {
 int translation_index = 0 ;

 while (translation_index < array_of_translations.size())
 {
 array_of_translations.get(translation_index).
 translate(command_line_parameters[0]) ;

 translation_index ++ ;
 }

 System.out.print("\n") ;
 }
 else
 {
 System.out.print("\n Give a word on command line.\n\n") ;
 }
 }
}

An ArrayList-based array is used to store references to
translation objects. When an ArrayList array is created this
way, the array can store references to objects that are either
objects of class BilingualTranslation or objects of some
subclass of BilingualTranslation. As Trilingual-
Translation is a subclass of BilingualTranslation,
TrilingualTranslation objects can be stored as well.

Translate.java - 3. A simple translation application which uses the translation classes.

Here, translation objects
are created to the heap mem-
ory, and references to the
objects are added to the end of
array_of_translations.

Method translate() is called here to possibly produce a
translation. Depending on what type of object is referenced by
the array element of array_of_translations, the appropri-
ate version of the two versions of method translate() is
selected automatically.

15.1 ArrayList class 513

Translate.java - X. The program is executed three times here.

D:\javafiles3>java Translate week

 "week" translates to "semana"

D:\javafiles3>java Translate woman

 "woman" translates to "mujer" and "femme"

D:\javafiles3>java Translate rue

 "rue" translates to "street" and "calle"

In this case the given word
was found as the last word
inside an object of type
TrilingualTransla-

tion.

Exercises with program Translate.java
Exercise 15-1. Modify program Translate.java so that it informs the user if it is not able to translate the given

word. Method translate() returns true or false depending on whether or not the transla-
tion was successful, but in the current version of the program that information is ignored. (It is
possible to call a non-void method in the same way as methods of type void are called.) You
could declare a variable like

boolean word_has_been_translated = false ;

in method main() and set that to value true when a translation has been made.

Exercise 15-2. Improve program Translate.java so that it is capable of translating between four different lan-
guages. You can derive a class named FourLanguageTranslation from class Trilingual-
Translation.

Exercise 15-3. Make program Translate.java to read its translation data from a file. You could convert the
program to a translator application with which it would be possible to add new word combina-
tions to the translation data. The program could be a menu-based application similar to program
Collect.java. If you can find, for example from the Internet, an existing file which contains
translations of words from one language to another, you could make a translation program
which uses those existing translations. To make this task simpler, it might be best to translate
only between two languages.

Exercises related to ArrayList-based arrays
Exercise 15-4. In Chapter 7, a program named Reverse.java is introduced. That program uses a conventional

Java array to store values of type int. Rewrite the program so that int values are stored to an
ArrayList array instead of a conventional array.

Exercise 15-5. An ArrayList-based array is particularly useful in an application in which objects are dynam-
ically inserted to an array and removed from an array. Program Collect.java is this kind of
application. Rewrite program Collect.java so that you use inside class Collection an
ArrayList array in place of the conventional array. This modification should simplify the
methods of class Collection. (If you have developed some other program that is similar to
Collect.java, it might be a useful idea to use an ArrayList-based array in that program.)

514 Chapter 15: More standard Java types

15.2 Comparable and other interfaces

A Java class can inherit the members of only one immediate superclass. A class cannot
have several immediate superclasses. Sometimes, however, it is necessary that classes can
be specified so that they possess certain qualities in addition to the qualities that are inher-
ited from the immediate superclass and classes that are superclasses of the immediate
superclass. The concept of interface has been invented to specify additional qualities of
classes.

When a class is declared, it can inherit one class, and in addition it can implement
one or more interfaces. Java has the reserved keyword implements which can be used in
the following way

class SomeClass extends SomeSuperclass
 implements SomeInterface, SomeOtherInterface
{
 ...

In this case SomeClass implements two named interfaces SomeInterface and
SomeOtherInterface. When a class implements several interfaces, the names of the
interfaces are separated by commas in the class declaration.

An interface usually specifies a set of methods. In addition an interface can specify
constants. An interface contains only method declarators (method headers). It does not
provide implementations (i.e. method bodies) for the specified methods. It is the responsi-
bility of the class that implements an interface to provide implementations for the speci-
fied methods.

To explore the nature of interfaces, let’s suppose that the interface SomeInterface,
which is implemented by SomeClass above, is declared in the following way:

interface SomeInterface
{
 int calculate_something(int given_value) ;
 void do_something() ;
}

When SomeClass implements this interface, it means that SomeClass must have a
method named calculate_something() which takes an int value as a parameter and
returns an int value, and it must have a method named do_something() that neither
takes parameters nor returns anything. As the above SomeClass also implements the
other interface SomeOtherInterface, it means that SomeClass contains also all the
methods specified by that interface.

Interface declarations clearly resemble class declarations. The keyword interface
is used in place of the class keyword. Like classes, interfaces are usually written to their
own source program files, and the file name must correspond to the name of the interface.
An interface named SomeInterface should be kept in a file named SomeInterface.java.

Java provides standard interfaces in addition to standard classes. Many of the stan-
dard interfaces are generic interfaces, which means that when a class implements an inter-
face, it is necessary to specify the type of objects with which the methods of the interface
will operate. The class Event in program Events.java implements the standard interface
Comparable in the following way

class Event extends Date
 implements Comparable<Event>
{
 ...

This class declaration means that class Event has a method named compareTo() which
can compare Event objects. By writing <Event> after the interface name we specify that
the compareTo() method, that is the only method required by the Comparable interface,

