
CHAPTER 7

ARRAYS: SETS OF SIMILAR DATA ITEMS

Computers process information and usually they need to process masses of information. In
previous chapters we have studied programs that contain a few variables where informa-
tion is stored. These kinds of programs are not sufficient to handle practical information
processing tasks. Therefore, programming languages provide data structures that can store
larger quantities of information.

Arrays are data structures in which it is possible to store many similar data items. Arrays
can thus hold large amounts of information. In this chapter we shall learn how traditional
arrays are declared, created, and used in Java. A traditional array is such that it can store
data items of certain type (e.g. int, long, byte, or double). A traditional array has a cer-
tain length which specifies how many data items it can store.

© Copyright 2006-2013 Kari Laitinen
All rights reserved.
These are sample pages from Kari Laitinen’s book A Natural Introduction to
Computer Programming with Java. These pages may be used only by individu-
als who want to learn computer programming. These pages are for personal use
only. These pages may not be used for any commercial purposes. Neither elec-
tronic nor paper copies of these pages may be sold. These pages may not be pub-
lished as part of a larger publication. Neither it is allowed to store these pages in
a retrieval system or lend these pages in public or private libraries.
For more information about Kari Laitinen’s books, please visit
http://www.naturalprogramming.com/

178 Chapter 7: Arrays: sets of similar data items

7.1 Creating arrays and referring to array elements

Arrays are collections of similar data items, such as integers. We usually need an array
when we want to handle many similar data items in a single program. Everything that can
be stored in a variable can also be stored in an array. The difference between a variable
and an array is that, while a variable stores exactly one data item, an array can hold hun-
dreds of similar data items.

The declaration of an array is rather complex when we compare it to the declaration
of a variable. A variable of type int can be declared by writing

int some_name ;

but to declare and create an array that can hold 5 values of type int, we must write

int[] some_name = new int[5] ;

Both declarations above begin with the keyword int to indicate that we are declaring
something that can hold integer values. In the array declaration a pair of empty brackets []
after the keyword int tells the Java compiler that now we are declaring an array, and not a
variable. The expression to the right of the assignment operator = actually creates the array
and reserves necessary memory space for it. When we write

new int[5]

we specify that new memory space must be reserved to store 5 data items of type int. An
array like the one above is said to have 5 array elements or positions, and the length of the
array is 5. The storage capacity of this array is the same as the capacity of five separate
variables of type int.

Arrays are used in the same way as variables. First we declare an array and then we
store information in it. Storing information in a variable is simple because a variable holds
only one piece of information at a time. An assignment statement can store a value in a
variable, for example, in the following way

some_integer_variable = 7 ;

Storing a value in an array is more complex because we have to somehow specify
exactly where in the array we want the value to be stored. To store a number in an array,
we need to use an index value which dictates in which element in the array the number
will be stored. Let us suppose that we have the following array of integers created

int[] array_of_integers = new int[50] ;

This array can be used to store up to 50 integer values. At the beginning, when the array is
created, it does not contain meaningful data. We can refer to some array element by writ-
ing an index value in brackets after the array name. This way numbers can be stored in an
array. For example, the following assignment statements write numbers 7 and 77 to the
first and second element in the above array

array_of_integers[0] = 7 ;
array_of_integers[1] = 77 ;

Index values start counting from zero, not from one. When we want to refer to the
first element of an array, we use index 0. The index of the second element is 1, the index of
the third element is 2, and so on. The maximum index that the above array of integers can
have is 49, one less than the defined array length. You should note that the number inside
brackets has a different meaning in array creation and in a reference to an array element.
In an array creation the number means the array length. In a reference to an array element,
the number specifies which array element is going to be affected.

The above array of integers has a storage capacity that is equal to 50 variables of
type int. Because a variable of type int requires 4 bytes (32 bits) of memory space, the
above array requires 200 bytes (50 times 4 bytes) of memory. We can think that the array

7.1 Creating arrays and referring to array elements 179

is a 200-byte memory area that is divided into 50 slots, and each 4-byte slot can hold an
int value. By writing array_of_integers[0] we can refer to the first slot or posi-
tion in the array. array_of_integers[49] refers to the last position in the array.
When an array is allocated memory space from a computer’s main memory, we do not
need to know the exact memory address of the array. We can, however, think that the first
array position has the smallest numerical memory address, and the last position has the
largest numerical memory address.

Program ArrayDemo.java shows different ways to assign values to the elements of
an array whose type is int[]. The array in program ArrayDemo.java has 50 array ele-
ments which are filled with various integer values. You can see that a loop is the most effi-
cient way to fill an array. Usually, for loops are used when entire arrays are processed.
Figure 7-1 shows what the array of program ArrayDemo.java looks like in a computer's
main memory after the program has been executed.

An index variable, such as integer_index in ArrayDemo.java, is the most effi-
cient and common way to access the elements of an array. With an index variable we spec-
ify which position of an array we are currently accessing. An index variable is usually
initialized before the processing of an array begins. During the processing of an array in a
loop, the index variable is either incremented or decremented inside the loop. To under-
stand how index variables work, let us suppose that we have made the following declara-
tions:

int[] array_of_integers = new int[50] ;
int integer_index = 4 ;

The index variable integer_index having been initialized with the value 4,

• array_of_integers[integer_index] refers to the 5th array element in the
array of integers,

• array_of_integers[integer_index - 1] refers to the 4th element,

• array_of_integers[integer_index + 2] refers to the 7th element, and

• array_of_integers[integer_index * 2] refers to the 9th element.

The above examples demonstrate that it is possible to write an arithmetic expression
inside the brackets in an array reference.When we use an index variable, it is easy to move
to the following or previous element in an array by incrementing or decrementing the
index variable by one. An array reference that contains an arithmetic expression does not
alter the value of the index variable. In the array reference array_of_integers[
integer_index + 1] the value of integer_index is not modified. The program cal-
culates the value of integer_index + 1 (i.e. the program evaluates expression inte-
ger_index + 1), but that value is discarded once the array reference is processed.

Exercises with program ArrayDemo.java
Exercise 7-1. Written twice in the program is "+ 2". How would the behavior of the program change if the

plus sign and number 2 were taken away from the program?

Exercise 7-2. Modify the first for loop so that values 8, 11, 14, 17, 20, 23, 26, 29, etc. will be written to those
array positions which currently hold values 7, 9, 11, 13, 15, 17, 19, 21, etc. This is not a large
modification.

Exercise 7.3. What would happen if the beginning of the second for loop was written like
 for (integer_index = 1 ;
 integer_index < 29 ;
 integer_index = integer_index + 2)

Exercise 7-4. Modify the second for loop, or replace it with a while loop, so that the loop prints out the
integers from the array in reverse order. Studying program Reverse.java may help in this task.

180 Chapter 7: Arrays: sets of similar data items

// ArrayDemo.java

class ArrayDemo
{
 public static void main(String[] not_in_use)
 {
 int[] array_of_integers = new int[50] ;

 int integer_index ;

 array_of_integers[0] = 333 ;
 array_of_integers[1] = 33 ;
 array_of_integers[2] = 3 ;
 array_of_integers[3] = array_of_integers[2] + 2 ;

 for (integer_index = 4 ;
 integer_index < 50 ;
 integer_index ++)
 {
 array_of_integers[integer_index] =
 array_of_integers[integer_index - 1] + 2 ;
 }

 System.out.print("\n The contents of \"array_of_integers\" is:\n") ;

 for (integer_index = 0 ;
 integer_index < 50 ;
 integer_index ++)
 {
 if ((integer_index % 10) == 0)
 {
 System.out.print("\n") ;
 }

 System.out.printf("%5d", array_of_integers[integer_index]) ;
 }
 }
}

The fourth element in the
array gets a value that is the
value of the third element
plus 2. As the index value of
an array element is always
one less than the "serial num-
ber" of the element, the
fourth element is accessed
with index 3, and the third
element with index 2.

The first three
elements in the array
are assigned values
333, 33, and 3.

ArrayDemo.java - 1.+ A program that demonstrates the use of an array.

ArrayDemo.java - X. 10 array elements are printed on each row.

D:\javafiles2>java ArrayDemo

 The contents of "array_of_integers" is:

 333 33 3 5 7 9 11 13 15 17
 19 21 23 25 27 29 31 33 35 37
 39 41 43 45 47 49 51 53 55 57
 59 61 63 65 67 69 71 73 75 77
 79 81 83 85 87 89 91 93 95 97

7.1 Creating arrays and referring to array elements 181

 for (integer_index = 4 ;
 integer_index < 50 ;
 integer_index ++)
 {
 array_of_integers[integer_index] =
 array_of_integers[integer_index - 1] + 2 ;
 }

This for loop writes numbers to array positions with
index values from 4 to 49. As variable integer_index is
assigned value 4 at the beginning, the 5th element in the
array will be written first.

Here the index is an arithmetic expres-
sion. This means that the value of this
expression is used as an index to access
the array. The computer calculates how
much is "integer_index minus one"
before accessing the array. The value of
integer_index is not modified in this
operation.

The value of variable
integer_index is incre-
mented by one always after the
internal statements of the for
loop have been executed. The
variable will reach a value of
50 but that value is not used
because the loop terminates.

This statement means that the array element
currently referred to with integer_index gets a
value that is the value of the preceding array ele-
ment plus 2. By writing integer_index - 1 it
is possible to refer to the preceding element in the
array. Because the value of array_of_inte-
gers[3] is 5, the values of subsequent ele-
ments will be 7, 9, 11, 13, 15, etc.

ArrayDemo.java - 1 - 1: The for loop that writes array elements with indexes from 4 to 49.

 for (integer_index = 0 ;
 integer_index < 50 ;
 integer_index ++)
 {
 if ((integer_index % 10) == 0)
 {
 System.out.print("\n") ;
 }

 System.out.printf("%5d", array_of_integers[integer_index]) ;
 }

Usually, when we want to go through an entire
array in a for loop, the first index is zero, and the
upper limit is the array length, which is 50 in this
case. The value 50 is never used in array access
because the operator <, "less than", terminates the
loop with that value.

Method printf() prints the values of the array elements. This format specifier
stipulates that the values are printed right-justified to a printing field that is 5 charac-
ter positions wide. This ensures that all numbers end in the same column on the
screen, regardless of how many digits the numbers may have.

ArrayDemo.java - 1 - 2. The for loop that prints the entire array to the screen.

This if construct ensures that a
newline character is printed after
ten values from the array have been
printed. Here the remainder opera-
tor % returns the remainder for the
case where the integer_index is
divided by 10. A newline will be
printed if the remainder is zero.
This results in a newline being
printed with integer_index val-
ues 0, 10, 20, 30, and 40. The use of
operator % does not affect the value
of integer_index.

182 Chapter 7: Arrays: sets of similar data items

Figure 7-1. The array of integers in the main memory after the execution of ArrayDemo.java.

Here, we again imagine the
main memory as a
sequence of one-byte mem-
ory cells which have
unique numerical
addresses. When program
ArrayDemo.java is exe-
cuted, the array represented
by array_of_integers
is somewhere in the main
memory of the computer.
The first element of the
array has the smallest
memory address.

01001101
00000001
00000000
00000000
00100001
00000000
00000000
00000000
00000011
00000000
00000000
00000000
00000101
00000000
00000000
00000000
00000111
00000000
00000000
00000000
00001001
00000000
00000000
00000000
00001011
00000000
00000000
00000000
00001101
00000000
00000000
00000000

...

01011111
00000000
00000000
00000000
01100001
00000000
00000000
00000000

This is the first element (position) of
type int in the array. Each element
consists of 4 bytes because the size of
int is 4 bytes. The binary number that
is stored here is
 101001101B

which is 333 decimal. The most signifi-
cant bit is stored in the second byte.
Personal computers store binary integer
values so that the least significant byte
is stored first, and more significant
bytes can be found in the following
memory locations. There is something
other than just zeroes in the third and
fourth bytes only when the stored value
is greater than 65535 (FFFFH).

This is the 5th element of the array
which can be referred to by writing
 array_of_integers[4]

The value stored here is 111B which
means 7 in the decimal system.

If the address of the first array
element is x, the address of
the 5th element is x + 16. The
address of an array element is
the address of the first ele-
ment plus 4 times the index
value of the element. Because
this array has 50 elements,
valid indexes are in the range
from 0 to 49.

Not all array elements are
shown here because of space
limitations. The address of
the last byte of the array is the
beginning address of the array
plus 200 minus 1.

This is the 50th and last element which
can be referred to by writing
 array_of_integers[49]

The value stored here is 1100001B
which means 97.

7.1 Creating arrays and referring to array elements 183

Program Reverse.java is another example of using an array of integers. This pro-
gram reads integers from the keyboard and stores the read numbers in an array. The read-
ing loop terminates when the user types in a zero. The reading loop is followed by another
loop that outputs the integers from the array so that the integers are printed in reverse
order. This is achieved by decrementing the index variable towards zero. Arrays are used
in programs when many similar data items need to be stored and manipulated. Program
Reverse.java has to store all the input integers because it needs to remember them all in
order to print them in reverse order.

When we create an array, we must specify a length for the array. For example, when
we write

int[] array_of_integers = new int[50] ;

we create an array whose length is 50, i.e., this array has 50 different positions for storing
int values. The length of an array cannot be modified after the array is created.

The length of an array dictates which are the legal index values when we refer to the
individual array elements. For an array whose length is 50, the legal index values are in the
range from 0 to 49. The Java compiler can compile a program in which an illegal index
value is used, but the program cannot be executed. For example, a program containing the
statements

int[] array_of_integers = new int[50] ;
array_of_integers[52] = 88 ;
array_of_integers[99] = 888 ;

can be compiled, but it cannot be successfully executed because the index values 52 and
99 are larger than the largest legal index value 49.

Program Reverse.java does not have any protection against the use of too large
index values. If you had the patience to type in more than 100 integers into Reverse.java,
the program would terminate with the text

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 100

appearing on the screen. Reverse.java was written without any protection against the use
of too large index values because it is easier at first to study simple programs. However,
when you write programs that have purposes other than educational, you must take care
that array indexes are not growing too large.

Program MeanvalueArray.java is an example of a safer program that ensures that
the index variable number_index does not exceed the length of the used array. The
while loop that writes data to the array is equipped with the boolean expression

number_index < array_of_numbers.length

which terminates the loop if number_index becomes too large. By writing .length in
the above boolean expression we can find out what length was specified for the array when
it was created.

length is a data field that is associated with every array. This data field stores the
length of an array and it can be read by using the dot operator . in the following way

array_name.length

The length field provides an integer value that tells what is the length of the array in
question. This integer value can be used in many ways. For example, the program lines

int[] some_array = new int[33] ;
System.out.print("Array length is " + some_array.length) ;

would produce the following line to the screen

Array length is 33

184 Chapter 7: Arrays: sets of similar data items

// Reverse.java (c) Kari Laitinen

import java.util.* ;

class Reverse
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 int[] array_of_integers = new int[100] ;
 int integer_index = 0 ;
 int integer_from_keyboard = 0 ;

 System.out.print("\n This program reads integers from the keyboard."
 + "\n After receiving a zero, it prints the numbers"
 + "\n in reverse order. Please, start entering numbers."
 + "\n The program will stop when you enter a zero.\n\n") ;
 do
 {
 System.out.print(" " + integer_index + " Enter an integer: ") ;
 integer_from_keyboard = keyboard.nextInt() ;

 array_of_integers[integer_index] = integer_from_keyboard ;
 integer_index ++ ;
 }
 while (integer_from_keyboard != 0) ;

 System.out.print("\n Reverse order: ") ;

 while (integer_index > 0)
 {
 integer_index -- ;
 System.out.print(array_of_integers[integer_index] + " ") ;
 }
 }
}

Here we declare and create an array that has space to
store 100 int values. This array reserves 400 bytes of
memory. integer_index is a variable that is used to
index the array. With initial value 0, integer_index
refers to the first position in the array.

This while loop prints the
contents of the array to the
screen. Because integer_in-
dex is decremented inside the
loop, the numbers are printed
in reverse order.

Reverse.java - 1.+ A program that inputs integers and prints them in reverse order.

The value of variable integer_-
from_keyboard is copied to an
array position specified by the value
of variable integer_index. As the
value of integer_index is incre-
mented by one after this statement,
the next integer will be written to the
next position in the array.

This do-while loop terminates when the user of the pro-
gram types in a zero. Also the zero is written to the array.
When this loop terminates, integer_index has a value that
is exactly the same as the number of integers written to the
array. The zero is included in that count.

Remember that do-while loops execute at least once.
This program works also when the user enters nothing but
the zero.

7.1 Creating arrays and referring to array elements 185

 while (integer_index > 0)
 {
 integer_index -- ;
 System.out.print(array_of_integers[integer_index] + " ") ;
 }

This loop can be approximately
translated into natural language: "As
long as it is possible to decrement vari-
able integer_index without it
becoming negative, decrement it, and
use the value to print an integer from
the array of integers."

When this loop is entered, integer_index con-
tains a value that equals the number of integers that
were originally typed in and stored to the array.
integer_index thus refers to the first array element
that has not been written in the program. Therefore,
integer_index must be decremented before any-
thing is printed. Operator -- decrements the value of a
variable by one.

Three spaces are used to sepa-
rate the printed integers.

Reverse.java - 1 - 1. The while loop that prints the array in reverse order.

Reverse.java - X. Here the program is executed with 9 integers.

D:\javafiles2>java Reverse

 This program reads integers from the keyboard.

 After receiving a zero, it prints the numbers
 in reverse order. Please, start entering numbers.
 The program will stop when you enter a zero.

 0 Enter an integer: 22
 1 Enter an integer: 33
 2 Enter an integer: 444
 3 Enter an integer: 555
 4 Enter an integer: 6666

 5 Enter an integer: 7777
 6 Enter an integer: 88
 7 Enter an integer: 99
 8 Enter an integer: 0

 Reverse order: 0 99 88 7777 6666 555 444 33 22

186 Chapter 7: Arrays: sets of similar data items

// MeanvalueArray.java

import java.util.* ;

class MeanvalueArray
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;
 System.out.print("\n This program calculates the mean value of"
 + "\n the numbers you enter from the keyboard."
 + "\n The program stops when you enter a letter."
 + "\n\n Enter a number: ") ;

 double[] array_of_numbers = new double[100] ;
 int number_index = 0 ;
 boolean keyboard_input_is_numerical = true ;

 while (keyboard_input_is_numerical == true &&
 number_index < array_of_numbers.length)
 {
 try
 {
 double number_from_keyboard = keyboard.nextDouble() ;

 array_of_numbers[number_index] = number_from_keyboard ;
 number_index ++ ;
 System.out.print(" Enter a number: ") ;
 }
 catch (Exception not_numerical_input_exception)
 {
 keyboard_input_is_numerical = false ;
 }
 }

 int number_of_numbers_in_array = number_index ;
 double sum_of_numbers = 0 ;

 for (number_index = 0 ;
 number_index < number_of_numbers_in_array ;
 number_index ++)
 {
 sum_of_numbers = sum_of_numbers +
 array_of_numbers[number_index] ;
 }

 double mean_value = 0 ;

 if (number_of_numbers_in_array > 0)
 {
 mean_value = sum_of_numbers /
 (double) number_of_numbers_in_array ;
 }

 System.out.print("\n The mean value is: " + mean_value + " \n") ;
 }
}

An array is created here so that its length is 100. The
array is thus capable of holding 100 different values of
type double. Later, the length field is used to refer to
the previously specified length of the array.

MeanvalueArray.java - 1.+ An improved version of program MeanvalueException.java.

7.1 Creating arrays and referring to array elements 187

 while (keyboard_input_is_numerical == true &&
 number_index < array_of_numbers.length)
 {
 try
 {
 double number_from_keyboard = keyboard.nextDouble() ;

 array_of_numbers[number_index] = number_from_keyboard ;
 number_index ++ ;
 System.out.print(" Enter a number: ") ;
 }
 catch (Exception not_numerical_input_exception)
 {
 keyboard_input_is_numerical = false ;
 }
 }

The boolean expression of this while loop con-
sists of two subexpressions. The latter part of the
boolean expression takes care that too large index
values are not used. The length of the array was
defined to be 100 at the beginning of the program. If
number_index reaches this value, the loop termi-
nates. The logical-AND operator && combines the
two parts of the boolean expression.

This statement is executed when the user of the
program types in something else than valid numbers.
When the boolean variable is given the value false,
the loop terminates.

This statement copies the number
typed in from the keyboard into the
array position determined by the value
of number_index.

MeanvalueArray.java - 1 -1. The while loop that inputs numbers from the keyboard.

As in program MeanvalueEx-
ception.java, numerical values are
read from the keyboard inside a
try-catch construct. When
method nextDouble() detects
that non-numerical data were read
from the keyboard, the catch
block is executed.

MeanvalueArray.java - X. Calculating the mean value of five input numbers.

D:\javafiles2>java MeanvalueArray

 This program calculates the mean value of
 the numbers you enter from the keyboard.
 The program stops when you enter a letter.

 Enter a number: 1040.609
 Enter a number: 2030.456
 Enter a number: 2345
 Enter a number: 2346.789
 Enter a number: 3344.99
 Enter a number: z

 The mean value is: 2221.5688

188 Chapter 7: Arrays: sets of similar data items

Program MeanvalueArray.java is an improved version of programs Mean-
value.java and MeanvalueException.java which we studied in Chapter 6. These pro-
grams are able to calculate mean values of integers, but MeanvalueArray.java is also
able to handle floating-point numbers and even the zero. The array in MeanvalueAr-
ray.java is of type double, the double-precision floating-point type. Although the array is
a floating-point array, it is indexed with an int variable.

Every variable type in Java can also be the type of an array (see Figure 7-2). All
types of arrays are indexed in the same way, using indexes of type int. The arrays

int[] array_of_integers = new int[50] ;
float[] array_of_floats = new float[50] ;
double[] array_of_numbers = new double[50] ;
char[] array_of_characters = new char[50] ;

are all acceptable to the Java compiler. The length of all these arrays is 50, but they would
need different amounts of memory. The array of type float[] would need 200 bytes of
memory because a variable of type float needs 4 bytes. The array of type char[] would
need only 100 bytes because a variable of type char is a two-byte variable.

When we use arrays in our programs, we usually need index variables to access the
array. In this book the index variables are mostly named so that the name of the index vari-
able indicates what is stored in the array being indexed. For example, if an array stores
integers, the name of the index variable is integer_index; arrays that store other kinds
of numbers are indexed with a variable named number_index; an array of type char[]
is indexed with character_index; and so on.

.

Figure 7-2. The syntax of a simple array creation statement.

Type[] array_name = new Type[expression] ;

new is a reserved keyword and an
operator that is used when arrays are
created. Operator new indicates a
memory reservation operation. When
an array is created, memory is
reserved (allocated) for it.

This pair of empty brackets indicates
that an array is being declared.

Type can be char, int, long, dou-
ble, or some other basic variable
type. Later on we shall learn that
Type can be a type specified by the
programmer.

The expression inside these brackets specifies the length
of the array to be created. The expression can be simply
a literal constant like 50, or it can be a more complex
arithmetic expression such as
 current_array_length + 200

When arrays are declared and created in Java, the pair of empty brackets
can alternatively be placed in the following way:
 Type array_name[] = new Type[expression] ;
In this book, however, we will not declare arrays this way because when
the pair of empty brackets is written right after Type, the reader of the
program can discover it more easily that an array is being introduced.

7.2 Array declaration vs. array creation 189

7.2 Array declaration vs. array creation

In the example programs of the preceding section, arrays were created with statements
such as

int[] array_of_integers = new int[50] ;

This statement actually includes two separate operations: the declaration of an array and
the creation of an array. The above statement can be replaced with the two statements

int[] array_of_integers ;

array_of_integers = new int[50] ;

of which the first statement declares an array and the latter statement creates an array. The
array declaration statement

int[] array_of_integers ;

specifies an array reference that can refer to or point to an array that will be created later.
The pair of empty brackets informs the compiler that here we are declaring an array, and
not a variable. Keyword int in the declaration stipulates that the array can contain only
values of type int.

The array creation statement

array_of_integers = new int[50] ;

actually creates the array by reserving necessary memory area for it. An array of type
int[] whose length is 50 needs a memory area whose size is equal to the memory needed
by 50 separate variables of type int.

When a Java program is being run on a computer, the program uses separate memory
areas from the main memory in the following way:

• The program needs "program memory" for itself. The Java interpreter (the Java vir-
tual machine) stores the executable Java program from a .class file to a memory
area which we can call "program memory". (An executable Java program consists
of bytecode instructions which are processed by the Java interpreter. The Java in-
terpreter is itself a "real" computer program consisting of executable machine in-
structions.)

• The stack memory is a memory area from which memory space is allocated for
small data items such as variables.

• The heap memory is a memory area from which the program can reserve memory
space for large pieces of data. The large pieces of data include arrays and other
large objects that we’ll study later in this book.

When an array is declared and created in a Java program, both the stack memory and
the heap memory are needed. These separate memory areas, that reside "somewhere" in
the main memory, are used so that an array creation statement reserves memory space
from the heap memory, and an array declaration statement reserves four bytes from the
stack memory. The four bytes that are reserved from the stack memory are able to store a
32-bit memory address, the address of the memory space in the heap memory. Figure 7-3
describes the usage of these two memory areas.

When we speak about the separate memory areas in the main memory of a computer,
we can only say that they reside "somewhere" in the main memory. We do not need to
know exactly where these memory areas are. The operating system of the computer man-
ages these memory areas, and takes care that program executing on the computer can
access them. We, programmers, need to understand how these memory areas are used
when we specify different kinds of data constructs in our programs.

190 Chapter 7: Arrays: sets of similar data items

Figure 7-3. Memory used by an array.

STACK MEMORY
The memory area in the
main memory for small data
items.

 C9H
 00H

We suppose here that the memory area
that has been reserved from the heap
memory starts in address C92AF0H.
This address is stored in reverse byte
order to the four bytes on the stack.
(We can think that when a memory area
is reserved from the heap memory, the
direct address of the area is stored to
the stack memory. In reality, however,
the automatic memory management
system may be more complicated and
use indirect addresses, i.e., addresses of
addresses.)

 2AH
 F0H

.

.

.

HEAP MEMORY
The memory area for large
pieces of data.

The declaration
 int[] array_of_integers ;

reserves four bytes from the stack
memory. These four bytes can store a
32-bit memory address.

The array creation statement
 array_of_integers =
 new int[50] ;

reserves a memory area from the heap
memory. The size of the reserved mem-
ory area is 200 bytes (50 times the size
of an int variable which is four bytes).
The heap memory is a free memory area
from which programs can reserve (allo-
cate) memory space. The above array
creation statement stores the address of
the reserved memory area to those four
bytes that are reserved from the stack.
The automatic memory management
system may reserve some additional
bytes for "management purposes" when
memory is reserved from the heap
memory, but we, programmers, do not
"see" those bytes, and hence we do not
need to worry about them.

 00C92AF0H:

